IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v114y2022ics0140988322004388.html
   My bibliography  Save this article

Tariff structure for regulation of reactive power and harmonics in prosumer-enabled low voltage distribution networks

Author

Listed:
  • Budhavarapu, Jayaprakash
  • Thirumala, Karthik
  • Mohan, Vivek
  • Bu, Siqi
  • Sahoo, Manoranjan

Abstract

The exponential growth of renewable energy generation, electronic loads, and electromobility in active distribution networks has severe consequences on the network's power quality (PQ) and economic impacts on the utility. The conventional active energy tariff for low-voltage (LV) consumers do not consider the cost associated with the PQ parameters, specifically, power factor and harmonic distortion. Besides, there is no standard tariff structure in practice for PQ regulation in the prosumer-enabled LV distribution network. This paper proposes a tariff scheme for LV customers (consumers or prosumers) aiming to regulate their reactive power and harmonic injection. The proposed tariff scheme allows customers to participate in network voltage profile improvement for the benefit of both utility and customers. Further, we propose a technique to evaluate the individual contribution of consumers, prosumers, and utility to harmonic pollution at PCC, which is crucial in finding harmonic penalties. The proposed tariff scheme is validated on a modified CIGRE LV radial active distribution network with diverse loads. Finally, the tariff scheme is evaluated on a laboratory-scale system comprising a three-phase consumer with diverse loads and a variable supply. The results elucidate that the tariff scheme is realistic and appropriately penalizes/incentivizes the consumers and prosumers according to their reactive and harmonic profiles.

Suggested Citation

  • Budhavarapu, Jayaprakash & Thirumala, Karthik & Mohan, Vivek & Bu, Siqi & Sahoo, Manoranjan, 2022. "Tariff structure for regulation of reactive power and harmonics in prosumer-enabled low voltage distribution networks," Energy Economics, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322004388
    DOI: 10.1016/j.eneco.2022.106309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322004388
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. da Silva, Roberto Perillo Barbosa & Quadros, Rodolfo & Shaker, Hamid Reza & da Silva, Luiz Carlos Pereira, 2020. "Effects of mixed electronic loads on the electrical energy systems considering different loading conditions with focus on power quality and billing issues," Applied Energy, Elsevier, vol. 277(C).
    2. Boampong, Richard & Brown, David P., 2020. "On the benefits of behind-the-meter rooftop solar and energy storage: The importance of retail rate design," Energy Economics, Elsevier, vol. 86(C).
    3. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    4. Austmann, Leonhard M. & Vigne, Samuel A., 2021. "Does environmental awareness fuel the electric vehicle market? A Twitter keyword analysis," Energy Economics, Elsevier, vol. 101(C).
    5. Mishra, Anirban & Tripathi, P.M. & Chatterjee, Kalyan, 2018. "A review of harmonic elimination techniques in grid connected doubly fed induction generator based wind energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 1-15.
    6. Best, Rohan & Burke, Paul J. & Nishitateno, Shuhei, 2019. "Evaluating the effectiveness of Australia's Small-scale Renewable Energy Scheme for rooftop solar," Energy Economics, Elsevier, vol. 84(C).
    7. Ahmad, Ali & Kashif, Syed Abdul Rahman & Saqib, Muhammad Asghar & Ashraf, Arslan & Shami, Umar Tabrez, 2019. "Tariff for reactive energy consumption in household appliances," Energy, Elsevier, vol. 186(C).
    8. Nanaki, Evanthia A. & Koroneos, Christopher J., 2016. "Climate change mitigation and deployment of electric vehicles in urban areas," Renewable Energy, Elsevier, vol. 99(C), pages 1153-1160.
    9. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2023. "Determination of the Optimal Level of Reactive Power Compensation That Minimizes the Costs of Losses in Distribution Networks," Energies, MDPI, vol. 17(1), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayurkumar Rajkumar Balwani & Karthik Thirumala & Vivek Mohan & Siqi Bu & Mini Shaji Thomas, 2021. "Development of a Smart Meter for Power Quality-Based Tariff Implementation in a Smart Grid," Energies, MDPI, vol. 14(19), pages 1-21, September.
    2. Kirchbacher, Florian & Biegger, Philipp & Miltner, Martin & Lehner, Markus & Harasek, Michael, 2018. "A new methanation and membrane based power-to-gas process for the direct integration of raw biogas – Feasability and comparison," Energy, Elsevier, vol. 146(C), pages 34-46.
    3. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    4. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    5. Andrea Amado & Koji Kotani & Makoto Kakinaka & Shunsuke Managi, 2023. "Carbon tax for cleaner-energy transition: A vignette experiment in Japan," Working Papers SDES-2023-6, Kochi University of Technology, School of Economics and Management, revised Oct 2023.
    6. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    7. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    8. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    9. David P. Brown & Andrew Eckert & Douglas Silveira, 2023. "Strategic interaction between wholesale and ancillary service markets," Competition and Regulation in Network Industries, , vol. 24(4), pages 174-198, December.
    10. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    11. Lukas Wienholt & Ulf Philipp Müller & Julian Bartels, 2018. "Optimal Sizing and Spatial Allocation of Storage Units in a High-Resolution Power System Model," Energies, MDPI, vol. 11(12), pages 1-17, December.
    12. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Best, Rohan & Sinha, Kompal, 2021. "Fuel poverty policy: Go big or go home insulation," Energy Economics, Elsevier, vol. 97(C).
    14. Tong Zhang, Paul J. Burke, and Qi Wang, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Departmental Working Papers 2024-1, The Australian National University, Arndt-Corden Department of Economics.
    15. Brown, David P. & Sappington, David E.M., 2020. "Motivating the optimal procurement and deployment of electric storage as a transmission asset," Energy Policy, Elsevier, vol. 138(C).
    16. Hyrzyński, Rafał & Ziółkowski, Paweł & Gotzman, Sylwia & Kraszewski, Bartosz & Ochrymiuk, Tomasz & Badur, Janusz, 2021. "Comprehensive thermodynamic analysis of the CAES system coupled with the underground thermal energy storage taking into account global, central and local level of energy conversion," Renewable Energy, Elsevier, vol. 169(C), pages 379-403.
    17. Machado, Renato Haddad Simões & Rego, Erik Eduardo & Udaeta, Miguel Edgar Morales & Nascimento, Viviane Tavares, 2022. "Estimating the adequacy revenue considering long-term reliability in a renewable power system," Energy, Elsevier, vol. 243(C).
    18. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    19. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    20. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322004388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.