IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v114y2022ics0140988322003826.html
   My bibliography  Save this article

Using machine learning to model technological heterogeneity in carbon emission efficiency evaluation: The case of China's cities

Author

Listed:
  • Wang, Ailun
  • Hu, Shuo
  • Li, Jianglong

Abstract

Improving carbon emission efficiency is essential to address climate change. The widely used methods of modelling heterogeneity in efficiency evaluation tend to artificially classify groups based on a single variable and thus result in biased estimation. To fill this knowledge gap, this paper proposes a new method that combines machine learning and radial directional distance function (DDF) to estimate carbon emission efficiency and reduction potential, in which heterogeneity could be grouped endogenously. Furthermore, index decomposition analysis (IDA) is incorporated to explore the dynamic determinants of carbon emission reduction potential. Using China's data at city level from 2010 to 2018, we found that carbon emission efficiency considering technology heterogeneity is between 0.569–0.822. This implies an excellent emission reduction potential of around 5.9 million tons in 2018. The reduction potential is attributable to managerial failure and technology gap—the latter accounts for 46–55% of the total reduction potential. We arguably conclude that the method in this paper can capture each city's economic and environmental information more accurately than previous methods based on geographic grouping, which may underestimate the reduction potential. We anticipate the machine learning method in this paper could provide insights on clustering the technological heterogeneity and efficiency evaluation.

Suggested Citation

  • Wang, Ailun & Hu, Shuo & Li, Jianglong, 2022. "Using machine learning to model technological heterogeneity in carbon emission efficiency evaluation: The case of China's cities," Energy Economics, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322003826
    DOI: 10.1016/j.eneco.2022.106238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322003826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jie & Lv, Lin & Sun, Jiasen & Ji, Xiang, 2015. "A comprehensive analysis of China's regional energy saving and emission reduction efficiency: From production and treatment perspectives," Energy Policy, Elsevier, vol. 84(C), pages 166-176.
    2. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    3. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    4. Wang, Ailun & Hu, Shuo & Lin, Boqiang, 2021. "Emission abatement cost in China with consideration of technological heterogeneity," Applied Energy, Elsevier, vol. 290(C).
    5. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    6. Wang, Ailun & Hu, Shuo & Lin, Boqiang, 2021. "Can environmental regulation solve pollution problems? Theoretical model and empirical research based on the skill premium," Energy Economics, Elsevier, vol. 94(C).
    7. Chiu, Ching-Ren & Liou, Je-Liang & Wu, Pei-Ing & Fang, Chen-Ling, 2012. "Decomposition of the environmental inefficiency of the meta-frontier with undesirable output," Energy Economics, Elsevier, vol. 34(5), pages 1392-1399.
    8. Oh, Dong-hyun, 2010. "A metafrontier approach for measuring an environmentally sensitive productivity growth index," Energy Economics, Elsevier, vol. 32(1), pages 146-157, January.
    9. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    10. Li, Hongqi & Lu, Yue & Zhang, Jun & Wang, Tianyi, 2013. "Trends in road freight transportation carbon dioxide emissions and policies in China," Energy Policy, Elsevier, vol. 57(C), pages 99-106.
    11. Yanni Yu & Yongrok Choi, 2015. "Measuring Environmental Performance Under Regional Heterogeneity in China: A Metafrontier Efficiency Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 375-388, October.
    12. Alwyn Young, 2003. "Gold into Base Metals: Productivity Growth in the People's Republic of China during the Reform Period," Journal of Political Economy, University of Chicago Press, vol. 111(6), pages 1220-1261, December.
    13. Takayabu, Hirotaka, 2020. "CO2 mitigation potentials in manufacturing sectors of 26 countries," Energy Economics, Elsevier, vol. 86(C).
    14. Xu, Bin & Lin, Boqiang, 2021. "Investigating spatial variability of CO2 emissions in heavy industry: Evidence from a geographically weighted regression model," Energy Policy, Elsevier, vol. 149(C).
    15. Lin, Boqiang & Du, Kerui, 2014. "Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy," Energy, Elsevier, vol. 76(C), pages 884-890.
    16. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    17. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    18. Xiaolan Fu, 2008. "Foreign Direct Investment, Absorptive Capacity and Regional Innovation Capabilities: Evidence from China," Oxford Development Studies, Taylor & Francis Journals, vol. 36(1), pages 89-110.
    19. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    20. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongyun Luo & Xiangyi Lin, 2022. "Empirical Study on the Low-Carbon Economic Efficiency in Zhejiang Province Based on an Improved DEA Model and Projection," Energies, MDPI, vol. 16(1), pages 1-14, December.
    2. Keyao Yu & Zhigang Li, 2024. "Assessing carbon emission and energy efficiency in Yangtze River economic belt cities, China," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-31, February.
    3. Hu, Shuo & Wang, Ailun & Du, Kerui, 2023. "Environmental tax reform and greenwashing: Evidence from Chinese listed companies," Energy Economics, Elsevier, vol. 124(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    2. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    3. Wang, Ailun & Hu, Shuo & Li, Jianglong, 2021. "Does economic development help achieve the goals of environmental regulation? Evidence from partially linear functional-coefficient model," Energy Economics, Elsevier, vol. 103(C).
    4. Fei, Rilong & Lin, Boqiang, 2016. "Energy efficiency and production technology heterogeneity in China's agricultural sector: A meta-frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 25-34.
    5. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    6. Jianglong Li & Boqiang Lin, 2016. "Green Economy Performance and Green Productivity Growth in China’s Cities: Measures and Policy Implication," Sustainability, MDPI, vol. 8(9), pages 1-21, September.
    7. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    8. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Regional heterogeneity of China's energy efficiency in “new normal”: A meta-frontier Super-SBM analysis," Energy Policy, Elsevier, vol. 134(C).
    9. Yue Xu & Zebin Wang & Yung-Ho Chiu & Fangrong Ren, 2020. "Research on energy-saving and emissions reduction efficiency in Chinese thermal power companies," Energy & Environment, , vol. 31(5), pages 903-919, August.
    10. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    11. Wang, Ailun & Hu, Shuo & Lin, Boqiang, 2021. "Emission abatement cost in China with consideration of technological heterogeneity," Applied Energy, Elsevier, vol. 290(C).
    12. Long, Houyin & Li, Jianglong & Liu, Hongxun, 2022. "Internal migration and associated carbon emission changes: Evidence from cities in China," Energy Economics, Elsevier, vol. 110(C).
    13. Cheng, Zhonghua & Jin, Wei, 2022. "Agglomeration economy and the growth of green total-factor productivity in Chinese Industry," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    14. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    15. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    16. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    17. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    18. Wei, Yigang & Li, Yan & Wu, Meiyu & Li, Yingbo, 2019. "The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement," Energy Economics, Elsevier, vol. 78(C), pages 365-378.
    19. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    20. Du, Zhili & Wang, Yao, 2022. "Does energy-saving and emission reduction policy affects carbon reduction performance? A quasi-experimental evidence in China," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322003826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.