IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v107y2022ics0140988322000585.html
   My bibliography  Save this article

Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers

Author

Listed:
  • Su, Bin
  • Ang, B.W.
  • Sun, Ya-Fang

Abstract

Input-output (I-O) analysis has been widely used in embodied emission studies. For country-level analysis, the non-competitive imports assumption is generally preferred. However, national I-O tables with the non-competitive imports assumption are often not available. In empirical studies, the uniform imports share approach is usually adopted to give the estimated tables from the I-O tables with the competitive imports assumption. When data are available for two different years, structural decomposition analysis (SDA) can be applied to study the drivers of the embodied emission changes. We propose a SDA framework with two imports effects, i.e. input imports effect and demand imports effect, to evaluate the impacts of imports data treatment on the drivers. An empirical study using China's latest I-O datasets, for 2017 and 2018, show that the impacts are not significant at the national level but are significant at the sectoral level. For the latter, the impacts on sectoral embodied emission intensity range from −5% to 16%, while on sectoral embodied emissions range from −8% to 35%. Sectoral aggregate embodied intensity (AEI) indicators are found to be more robust to the imports data treatments than sectoral embodied emission intensity. In some cases a change in the sign of the input imports effect or demand imports effect is observed, which leads to opposite outcomes. Implications of the findings on embodied emission studies and the role of imports are discussed.

Suggested Citation

  • Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
  • Handle: RePEc:eee:eneeco:v:107:y:2022:i:c:s0140988322000585
    DOI: 10.1016/j.eneco.2022.105875
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322000585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.105875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    4. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    5. Jiahua Pan & Jonathan Phillips & Ying Chen, 2008. "China's balance of emissions embodied in trade: approaches to measurement and allocating international responsibility," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 24(2), pages 354-376, Summer.
    6. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    7. Su, Bin & Ang, B.W., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation," Ecological Economics, Elsevier, vol. 70(1), pages 10-18, November.
    8. Rui Xie & Meng Niu & Bin Su & Jiali Ge, 2021. "Are global value chains merely global? The case of Chinese Provinces in global value chains," Applied Economics, Taylor & Francis Journals, vol. 53(32), pages 3778-3794, July.
    9. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    10. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    11. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    12. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    13. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    14. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    15. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    16. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    17. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    18. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    19. Sheng Zhong & Bin Su, 2021. "Investigating ASEAN’s Participation in Global Value Chains: Production Fragmentation and Regional Integration," Surface Review and Letters (SRL), World Scientific Publishing Co. Pte. Ltd., vol. 38(02), pages 159-188.
    20. Su, Bin & Ang, B.W., 2011. "Multi-region input–output analysis of CO2 emissions embodied in trade: The feedback effects," Ecological Economics, Elsevier, vol. 71(C), pages 42-53.
    21. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    2. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    3. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    4. Zhang, Yimeng & Wang, Feng & Zhang, Bing, 2023. "The impacts of household structure transitions on household carbon emissions in China," Ecological Economics, Elsevier, vol. 206(C).
    5. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    6. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    7. Vaninsky, Alexander, 2023. "Roadmapping green economic restructuring: A Ricardian gradient approach," Energy Economics, Elsevier, vol. 125(C).
    8. Zhao, Mengxue & Yuan, Zhihang & Chan, Hon S., 2023. "Housing wealth and household carbon emissions: The role of homeownership in China," Ecological Economics, Elsevier, vol. 212(C).
    9. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "Impact of government subsidy on the optimal R&D and advertising investment in the cooperative supply chain of new energy vehicles," Energy Policy, Elsevier, vol. 164(C).
    10. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    11. Yanmei Li & Yue Wei & Xin Li & Liyuan Fu & Tianfa Xie & Siyan Liu & Yan Kang, 2024. "Carbon Emission Drivers and Critical Paths in the Interaction of the "Local-Domestic-International" Economic Cycle - A case study of Beijing," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(3), pages 1-6.
    12. Yu, Yan-Yan & Liang, Qiao-mei & Liu, Li-Jing, 2023. "Impact of population ageing on carbon emissions: A case of China's urban households," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 86-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    2. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    3. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    4. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    5. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    6. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    7. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    8. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    9. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    10. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    11. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    12. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    13. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    14. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    15. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    16. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    17. Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, vol. 9(4), pages 1-17, March.
    18. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    19. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    20. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).

    More about this item

    Keywords

    Input-output analysis; Structural decomposition analysis; Embodied emissions; Input imports effect; Demand imports effect; China;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • R15 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Econometric and Input-Output Models; Other Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:107:y:2022:i:c:s0140988322000585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.