IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v303y2022i2p819-839.html
   My bibliography  Save this article

Scheduling wine bottling operations with multiple lines and sequence-dependent set-up times: Robust formulation and a decomposition solution approach

Author

Listed:
  • Mac Cawley, Alejandro
  • Maturana, Sergio
  • Pascual, Rodrigo
  • Tortorella, Guilherme Luz

Abstract

Planning and scheduling the multiple bottling lines of large wineries can significantly increase or reduce their inventory cost and bottling lines operating costs. It also determines how well they meet their clients’ demand, which is critical for wineries. A good plan must consider demand, labour availability, bottling and labelling lines capacities, and the required materials. It also must ensure that the product is available on time, simultaneously keeping finished product inventory as low as possible, and efficiently using the lines and labour. For this, the planner must consider a large number of parameters, like customer orders, the lines’ production and labour capacities, bottling supplies availability, storage capacity, and labour costs. Furthermore, bottling wine has sequence-dependent set-up times. Changing from bottling red wine to white requires twice the set-up time needed to change from white to red, due to line cleaning. This makes planning and scheduling multiple bottling lines a complex process. We developed two models to support this process for a large winery: a basic one and one that generates more robust plans. Since solving this problem is difficult, we devised a decomposition algorithm that takes advantage of the different set-up types to reduce the time required to solve large problem instances. The results showed cost reductions of approximately 15% to 30% on test problems. We could also generate more robust plans without a significant cost increase. The model and solution approach were used to implement a decision support system for a large winery.

Suggested Citation

  • Mac Cawley, Alejandro & Maturana, Sergio & Pascual, Rodrigo & Tortorella, Guilherme Luz, 2022. "Scheduling wine bottling operations with multiple lines and sequence-dependent set-up times: Robust formulation and a decomposition solution approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 819-839.
  • Handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:819-839
    DOI: 10.1016/j.ejor.2022.02.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722001734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.02.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Ríos-Solís, Yasmín Á & Ibarra-Rojas, Omar J. & Cabo, Marta & Possani, Edgar, 2020. "A heuristic based on mathematical programming for a lot-sizing and scheduling problem in mold-injection production," European Journal of Operational Research, Elsevier, vol. 284(3), pages 861-873.
    3. Meyr, H., 2000. "Simultaneous Lotsizing and Scheduling by combining Local Search with Dual Reoptimization," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 39380, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Claudio F. M. Toledo & Alf Kimms & Paulo M. França & Reinaldo Morabito, 2015. "The Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem: Evaluating the Generalized Mathematical Model," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-18, July.
    5. Subhamoy Ganguly & Manuel Laguna, 2015. "Modeling and solving a closed-loop scheduling problem with two types of setups," IISE Transactions, Taylor & Francis Journals, vol. 47(8), pages 880-891, August.
    6. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    7. Jürgen Strohhecker & Michael Hamann & Jörn-Henrik Thun, 2016. "Loading and sequencing heuristics for job scheduling on two unrelated parallel machines with long, sequence-dependent set-up times," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6747-6767, November.
    8. Lersteau, Charly & Rossi, André & Sevaux, Marc, 2016. "Robust scheduling of wireless sensor networks for target tracking under uncertainty," European Journal of Operational Research, Elsevier, vol. 252(2), pages 407-417.
    9. Manuel Laguna, 1998. "Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty," Management Science, INFORMS, vol. 44(11-Part-2), pages 101-110, November.
    10. Kut C. So, 1990. "Some Heuristics for Scheduling Jobs on Parallel Machines with Setups," Management Science, INFORMS, vol. 36(4), pages 467-475, April.
    11. Ferreira, Deisemara & Clark, Alistair R. & Almada-Lobo, Bernardo & Morabito, Reinaldo, 2012. "Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production," International Journal of Production Economics, Elsevier, vol. 136(2), pages 255-265.
    12. Glock, Christoph H. & Grosse, Eric H. & Ries, Jörg M., 2014. "The lot sizing problem: A tertiary study," International Journal of Production Economics, Elsevier, vol. 155(C), pages 39-51.
    13. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    14. Guimarães, Luis & Klabjan, Diego & Almada-Lobo, Bernardo, 2014. "Modeling lotsizing and scheduling problems with sequence dependent setups," European Journal of Operational Research, Elsevier, vol. 239(3), pages 644-662.
    15. Douglas Alem & Fabricio Oliveira & Miguel Carrión Ruiz Peinado, 2020. "A practical assessment of risk-averse approaches in production lot-sizing problems," International Journal of Production Research, Taylor & Francis Journals, vol. 58(9), pages 2581-2603, May.
    16. Alyne Toscano & Deisemara Ferreira & Reinaldo Morabito, 2019. "A decomposition heuristic to solve the two-stage lot sizing and scheduling problem with temporal cleaning," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 142-173, March.
    17. Tamara A. Baldo & Reinaldo Morabito & Maristela O. Santos & Luis Guimarães, 2017. "Alternative Mathematical Models and Solution Approaches for Lot-Sizing and Scheduling Problems in the Brewery Industry: Analyzing Two Different Situations," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-18, August.
    18. Kovcs, Andrs & Brown, Kenneth N. & Tarim, S. Armagan, 2009. "An efficient MIP model for the capacitated lot-sizing and scheduling problem with sequence-dependent setups," International Journal of Production Economics, Elsevier, vol. 118(1), pages 282-291, March.
    19. Fabrizio Marinelli & Maria Nenni & Antonio Sforza, 2007. "Capacitated lot sizing and scheduling with parallel machines and shared buffers: A case study in a packaging company," Annals of Operations Research, Springer, vol. 150(1), pages 177-192, March.
    20. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    21. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.
    22. Ferreira, Deisemara & Morabito, Reinaldo & Rangel, Socorro, 2009. "Solution approaches for the soft drink integrated production lot sizing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 196(2), pages 697-706, July.
    23. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    24. Fleischmann, B. & Meyr, H., 1997. "The General Lotsizing and Scheduling Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 36068, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    25. Meyr, Herbert & Mann, Matthias, 2013. "A decomposition approach for the General Lotsizing and Scheduling Problem for Parallel production Lines," European Journal of Operational Research, Elsevier, vol. 229(3), pages 718-731.
    26. Garcia, Fernanda A. & Marchetta, Martin G. & Camargo, Mauricio & Morel, Laure & Forradellas, Raymundo Q., 2012. "A framework for measuring logistics performance in the wine industry," International Journal of Production Economics, Elsevier, vol. 135(1), pages 284-298.
    27. Karina Copil & Martin Wörbelauer & Herbert Meyr & Horst Tempelmeier, 2017. "Simultaneous lotsizing and scheduling problems: a classification and review of models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 1-64, January.
    28. Meyr, Herbert, 2002. "Simultaneous lotsizing and scheduling on parallel machines," European Journal of Operational Research, Elsevier, vol. 139(2), pages 277-292, June.
    29. Carvalho, Desiree M. & Nascimento, Mariá C.V., 2022. "Hybrid matheuristics to solve the integrated lot sizing and scheduling problem on parallel machines with sequence-dependent and non-triangular setup," European Journal of Operational Research, Elsevier, vol. 296(1), pages 158-173.
    30. Allahverdi, Ali, 2016. "A survey of scheduling problems with no-wait in process," European Journal of Operational Research, Elsevier, vol. 255(3), pages 665-686.
    31. Meyr, H., 2000. "Simultaneous lotsizing and scheduling by combining local search with dual reoptimization," European Journal of Operational Research, Elsevier, vol. 120(2), pages 311-326, January.
    32. Martin Wörbelauer & Herbert Meyr & Bernardo Almada-Lobo, 2019. "Simultaneous lotsizing and scheduling considering secondary resources: a general model, literature review and classification," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 1-43, March.
    33. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    34. Stefansdottir, Bryndis & Grunow, Martin & Akkerman, Renzo, 2017. "Classifying and modeling setups and cleanings in lot sizing and scheduling," European Journal of Operational Research, Elsevier, vol. 261(3), pages 849-865.
    35. Tempelmeier, Horst & Buschkühl, Lisbeth, 2008. "Dynamic multi-machine lotsizing and sequencing with simultaneous scheduling of a common setup resource," International Journal of Production Economics, Elsevier, vol. 113(1), pages 401-412, May.
    36. Mauricio Varas & Sergio Maturana & Susan Cholette & Alejandro Mac Cawley & Franco Basso, 2018. "Assessing the benefits of labelling postponement in an export-focused winery," International Journal of Production Research, Taylor & Francis Journals, vol. 56(12), pages 4132-4151, June.
    37. Varas, Mauricio & Maturana, Sergio & Pascual, Rodrigo & Vargas, Ignacio & Vera, Jorge, 2014. "Scheduling production for a sawmill: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 150(C), pages 37-51.
    38. Li, Shanling, 1997. "A hybrid two-stage flowshop with part family, batch production, major and minor set-ups," European Journal of Operational Research, Elsevier, vol. 102(1), pages 142-156, October.
    39. Meyr, H., 2002. "Simultaneous Lotsizing and Scheduling on Parallel Machines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 36065, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    40. Joyce W. Yen & John R. Birge, 2006. "A Stochastic Programming Approach to the Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 40(1), pages 3-14, February.
    41. Glock, C. H. & Grosse, E. H. & Ries, J. M., 2014. "The Lot Sizing Problem: A Tertiary Study," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63361, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabajyoti Bhattacharjee & Nabendu Sen, 2023. "A Sustainable Inventory Model to Study the Mixing and Bottling Plant of Single Item for Cost Minimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-18, December.
    2. Jalili, Monire & Çil, Eren B. & Pangburn, Michael S., 2024. "Pricing and structuring product trials: Separate versus mixed wine tastings," European Journal of Operational Research, Elsevier, vol. 312(2), pages 668-683.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karina Copil & Martin Wörbelauer & Herbert Meyr & Horst Tempelmeier, 2017. "Simultaneous lotsizing and scheduling problems: a classification and review of models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 1-64, January.
    2. Ferreira, Deisemara & Clark, Alistair R. & Almada-Lobo, Bernardo & Morabito, Reinaldo, 2012. "Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production," International Journal of Production Economics, Elsevier, vol. 136(2), pages 255-265.
    3. K. A. G. Araujo & E. G. Birgin & M. S. Kawamura & D. P. Ronconi, 2023. "Relax-and-Fix Heuristics Applied to a Real-World Lot Sizing and Scheduling Problem in the Personal Care Consumer Goods Industry," SN Operations Research Forum, Springer, vol. 4(2), pages 1-30, June.
    4. Lee, Younsoo & Lee, Kyungsik, 2022. "New integer optimization models and an approximate dynamic programming algorithm for the lot-sizing and scheduling problem with sequence-dependent setups," European Journal of Operational Research, Elsevier, vol. 302(1), pages 230-243.
    5. Martin Wörbelauer & Herbert Meyr & Bernardo Almada-Lobo, 2019. "Simultaneous lotsizing and scheduling considering secondary resources: a general model, literature review and classification," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 1-43, March.
    6. Guimarães, Luis & Klabjan, Diego & Almada-Lobo, Bernardo, 2013. "Pricing, relaxing and fixing under lot sizing and scheduling," European Journal of Operational Research, Elsevier, vol. 230(2), pages 399-411.
    7. Alyne Toscano & Deisemara Ferreira & Reinaldo Morabito, 2019. "A decomposition heuristic to solve the two-stage lot sizing and scheduling problem with temporal cleaning," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 142-173, March.
    8. Meyr, Herbert & Mann, Matthias, 2013. "A decomposition approach for the General Lotsizing and Scheduling Problem for Parallel production Lines," European Journal of Operational Research, Elsevier, vol. 229(3), pages 718-731.
    9. Carvalho, Desiree M. & Nascimento, Mariá C.V., 2022. "Hybrid matheuristics to solve the integrated lot sizing and scheduling problem on parallel machines with sequence-dependent and non-triangular setup," European Journal of Operational Research, Elsevier, vol. 296(1), pages 158-173.
    10. Gislaine Mara Melega & Silvio Alexandre de Araujo & Reinaldo Morabito, 2020. "Mathematical model and solution approaches for integrated lot-sizing, scheduling and cutting stock problems," Annals of Operations Research, Springer, vol. 295(2), pages 695-736, December.
    11. Masoumeh Mahdieh & Alistair Clark & Mehdi Bijari, 2018. "A novel flexible model for lot sizing and scheduling with non-triangular, period overlapping and carryover setups in different machine configurations," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 884-923, December.
    12. Miloš Milenković & Susana Val & Nebojša Bojović, 2023. "Simultaneous lot sizing and scheduling in the animal feed premix industry," Operational Research, Springer, vol. 23(2), pages 1-40, June.
    13. Curcio, Eduardo & Amorim, Pedro & Zhang, Qi & Almada-Lobo, Bernardo, 2018. "Adaptation and approximate strategies for solving the lot-sizing and scheduling problem under multistage demand uncertainty," International Journal of Production Economics, Elsevier, vol. 202(C), pages 81-96.
    14. Fabrizio Marinelli & Maria Nenni & Antonio Sforza, 2007. "Capacitated lot sizing and scheduling with parallel machines and shared buffers: A case study in a packaging company," Annals of Operations Research, Springer, vol. 150(1), pages 177-192, March.
    15. Józefowska, J. & Zimniak, A., 2008. "Optimization tool for short-term production planning and scheduling," International Journal of Production Economics, Elsevier, vol. 112(1), pages 109-120, March.
    16. Guimarães, Luis & Klabjan, Diego & Almada-Lobo, Bernardo, 2014. "Modeling lotsizing and scheduling problems with sequence dependent setups," European Journal of Operational Research, Elsevier, vol. 239(3), pages 644-662.
    17. Daniel Quadt & Heinrich Kuhn, 2009. "Capacitated lot‐sizing and scheduling with parallel machines, back‐orders, and setup carry‐over," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(4), pages 366-384, June.
    18. Lee, Younsoo & Lee, Kyungsik, 2023. "Valid inequalities and extended formulations for lot-sizing and scheduling problem with sequence-dependent setups," European Journal of Operational Research, Elsevier, vol. 310(1), pages 201-216.
    19. Chiwei Yan & Jerry Kung, 2018. "Robust Aircraft Routing," Transportation Science, INFORMS, vol. 52(1), pages 118-133, January.
    20. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:819-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.