IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i3p861-873.html
   My bibliography  Save this article

A heuristic based on mathematical programming for a lot-sizing and scheduling problem in mold-injection production

Author

Listed:
  • Ríos-Solís, Yasmín Á
  • Ibarra-Rojas, Omar J.
  • Cabo, Marta
  • Possani, Edgar

Abstract

This paper studies a lot-sizing and scheduling problem to maximize the profit of assembled products over several periods. The setting involves a plastic injection production environment where pieces are produced using auxiliary equipment (molds) to form finished products. Each piece may be processed in a set of molds with different production rates on various machines. The production rate varies according to the piece, mold and machine assignments. The novelty lies on the problem definition, where the focus is on finished products. We developed a two-stage iterative heuristic based on mathematical programming. First the lot-size of the products is determined together with the mold-machine assignments. The second stage determines if there is a feasible schedule of the molds with no overlapping. If unsuccessful, it goes back to the first stage and restricts the number of machines that a mold can visit, until a feasible solution is found. This decomposition approach allows us to deal with a more complex environment that incorporates idle times and assembly line considerations. We show the advantages of this methodology on randomly generated instances and on data from real companies. Experimental results show that our heuristic converges to a feasible solution with few iterations, obtaining solutions that the companies find competitive both in terms of quality and running times.

Suggested Citation

  • Ríos-Solís, Yasmín Á & Ibarra-Rojas, Omar J. & Cabo, Marta & Possani, Edgar, 2020. "A heuristic based on mathematical programming for a lot-sizing and scheduling problem in mold-injection production," European Journal of Operational Research, Elsevier, vol. 284(3), pages 861-873.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:861-873
    DOI: 10.1016/j.ejor.2020.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher Suerie & Hartmut Stadtler, 2003. "The Capacitated Lot-Sizing Problem with Linked Lot Sizes," Management Science, INFORMS, vol. 49(8), pages 1039-1054, August.
    2. Guimarães, Luis & Klabjan, Diego & Almada-Lobo, Bernardo, 2014. "Modeling lotsizing and scheduling problems with sequence dependent setups," European Journal of Operational Research, Elsevier, vol. 239(3), pages 644-662.
    3. Meyr, Herbert & Mann, Matthias, 2013. "A decomposition approach for the General Lotsizing and Scheduling Problem for Parallel production Lines," European Journal of Operational Research, Elsevier, vol. 229(3), pages 718-731.
    4. Meyr, Herbert, 2002. "Simultaneous lotsizing and scheduling on parallel machines," European Journal of Operational Research, Elsevier, vol. 139(2), pages 277-292, June.
    5. Wolosewicz, Cathy & Dauzère-Pérès, Stéphane & Aggoune, Riad, 2015. "A Lagrangian heuristic for an integrated lot-sizing and fixed scheduling problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 3-12.
    6. Stadtler, Hartmut, 2011. "Multi-level single machine lot-sizing and scheduling with zero lead times," European Journal of Operational Research, Elsevier, vol. 209(3), pages 241-252, March.
    7. Fandel, Gunter & Stammen-Hegene, Cathrin, 2006. "Simultaneous lot sizing and scheduling for multi-product multi-level production," International Journal of Production Economics, Elsevier, vol. 104(2), pages 308-316, December.
    8. Suerie, Christopher & Stadtler, Hartmut, 2003. "The Capacitated lot-sizing problem with linked lot sizes," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 20206, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. Meyr, H., 2002. "Simultaneous Lotsizing and Scheduling on Parallel Machines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 36065, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    11. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    12. Chen, Jeng-Fung & Wu, Tai-Hsi, 2006. "Total tardiness minimization on unrelated parallel machine scheduling with auxiliary equipment constraints," Omega, Elsevier, vol. 34(1), pages 81-89, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohaninejad, Mohammad & Hanzálek, Zdeněk, 2023. "Multi-level lot-sizing and job shop scheduling with lot-streaming: Reformulation and solution approaches," International Journal of Production Economics, Elsevier, vol. 263(C).
    2. Miloš Milenković & Susana Val & Nebojša Bojović, 2023. "Simultaneous lot sizing and scheduling in the animal feed premix industry," Operational Research, Springer, vol. 23(2), pages 1-40, June.
    3. Lee, Younsoo & Lee, Kyungsik, 2023. "Valid inequalities and extended formulations for lot-sizing and scheduling problem with sequence-dependent setups," European Journal of Operational Research, Elsevier, vol. 310(1), pages 201-216.
    4. Mac Cawley, Alejandro & Maturana, Sergio & Pascual, Rodrigo & Tortorella, Guilherme Luz, 2022. "Scheduling wine bottling operations with multiple lines and sequence-dependent set-up times: Robust formulation and a decomposition solution approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 819-839.
    5. K. A. G. Araujo & E. G. Birgin & M. S. Kawamura & D. P. Ronconi, 2023. "Relax-and-Fix Heuristics Applied to a Real-World Lot Sizing and Scheduling Problem in the Personal Care Consumer Goods Industry," SN Operations Research Forum, Springer, vol. 4(2), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karina Copil & Martin Wörbelauer & Herbert Meyr & Horst Tempelmeier, 2017. "Simultaneous lotsizing and scheduling problems: a classification and review of models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 1-64, January.
    2. Ferreira, Deisemara & Clark, Alistair R. & Almada-Lobo, Bernardo & Morabito, Reinaldo, 2012. "Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production," International Journal of Production Economics, Elsevier, vol. 136(2), pages 255-265.
    3. Lee, Younsoo & Lee, Kyungsik, 2022. "New integer optimization models and an approximate dynamic programming algorithm for the lot-sizing and scheduling problem with sequence-dependent setups," European Journal of Operational Research, Elsevier, vol. 302(1), pages 230-243.
    4. Masoumeh Mahdieh & Alistair Clark & Mehdi Bijari, 2018. "A novel flexible model for lot sizing and scheduling with non-triangular, period overlapping and carryover setups in different machine configurations," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 884-923, December.
    5. Carvalho, Desiree M. & Nascimento, Mariá C.V., 2022. "Hybrid matheuristics to solve the integrated lot sizing and scheduling problem on parallel machines with sequence-dependent and non-triangular setup," European Journal of Operational Research, Elsevier, vol. 296(1), pages 158-173.
    6. K. A. G. Araujo & E. G. Birgin & M. S. Kawamura & D. P. Ronconi, 2023. "Relax-and-Fix Heuristics Applied to a Real-World Lot Sizing and Scheduling Problem in the Personal Care Consumer Goods Industry," SN Operations Research Forum, Springer, vol. 4(2), pages 1-30, June.
    7. Sahling, Florian & Hahn, Gerd J., 2019. "Dynamic lot sizing in biopharmaceutical manufacturing," International Journal of Production Economics, Elsevier, vol. 207(C), pages 96-106.
    8. Kovcs, Andrs & Brown, Kenneth N. & Tarim, S. Armagan, 2009. "An efficient MIP model for the capacitated lot-sizing and scheduling problem with sequence-dependent setups," International Journal of Production Economics, Elsevier, vol. 118(1), pages 282-291, March.
    9. Mac Cawley, Alejandro & Maturana, Sergio & Pascual, Rodrigo & Tortorella, Guilherme Luz, 2022. "Scheduling wine bottling operations with multiple lines and sequence-dependent set-up times: Robust formulation and a decomposition solution approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 819-839.
    10. Liang, Zhe & He, Yan & Wu, Tao & Zhang, Canrong, 2015. "An informative column generation and decomposition method for a production planning and facility location problem," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 88-96.
    11. Curcio, Eduardo & Amorim, Pedro & Zhang, Qi & Almada-Lobo, Bernardo, 2018. "Adaptation and approximate strategies for solving the lot-sizing and scheduling problem under multistage demand uncertainty," International Journal of Production Economics, Elsevier, vol. 202(C), pages 81-96.
    12. Boysen, Nils & Emde, Simon, 2014. "Scheduling the part supply of mixed-model assembly lines in line-integrated supermarkets," European Journal of Operational Research, Elsevier, vol. 239(3), pages 820-829.
    13. Sahling, Florian & Buschkühl, Lisbeth & Tempelmeier, Horst & Helber, Stefan, 2008. "Solving a Multi-Level Capacitated Lot Sizing Problem with Multi-Period Setup Carry-Over via a Fix-and-Optimize Heuristic," Hannover Economic Papers (HEP) dp-400, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    15. Rohaninejad, Mohammad & Hanzálek, Zdeněk, 2023. "Multi-level lot-sizing and job shop scheduling with lot-streaming: Reformulation and solution approaches," International Journal of Production Economics, Elsevier, vol. 263(C).
    16. Bruno, Giuseppe & Genovese, Andrea & Piccolo, Carmela, 2014. "The capacitated Lot Sizing model: A powerful tool for logistics decision making," International Journal of Production Economics, Elsevier, vol. 155(C), pages 380-390.
    17. Raf Jans, 2009. "Solving Lot-Sizing Problems on Parallel Identical Machines Using Symmetry-Breaking Constraints," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 123-136, February.
    18. Alyne Toscano & Deisemara Ferreira & Reinaldo Morabito, 2019. "A decomposition heuristic to solve the two-stage lot sizing and scheduling problem with temporal cleaning," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 142-173, March.
    19. Daniel Quadt & Heinrich Kuhn, 2009. "Capacitated lot‐sizing and scheduling with parallel machines, back‐orders, and setup carry‐over," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(4), pages 366-384, June.
    20. Meyr, Herbert & Mann, Matthias, 2013. "A decomposition approach for the General Lotsizing and Scheduling Problem for Parallel production Lines," European Journal of Operational Research, Elsevier, vol. 229(3), pages 718-731.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:861-873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.