IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v273y2019i2p401-417.html
   My bibliography  Save this article

Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures

Author

Listed:
  • Framinan, Jose M.
  • Perez-Gonzalez, Paz
  • Fernandez-Viagas, Victor

Abstract

Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have led to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult.

Suggested Citation

  • Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.
  • Handle: RePEc:eee:ejores:v:273:y:2019:i:2:p:401-417
    DOI: 10.1016/j.ejor.2018.04.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718303369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.04.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin Deng & Ling Wang & Sheng-yao Wang & Xiao-long Zheng, 2016. "A competitive memetic algorithm for the distributed two-stage assembly flow-shop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(12), pages 3561-3577, June.
    2. Joseph Y-T. Leung & Haibing Li & Michael Pinedo, 2005. "Order Scheduling Models: An Overview," Springer Books, in: Graham Kendall & Edmund K. Burke & Sanja Petrovic & Michel Gendreau (ed.), Multidisciplinary Scheduling: Theory and Applications, pages 37-53, Springer.
    3. Ling-Huey Su & Ping-Shun Chen & Szu-Yin Chen, 2013. "Scheduling on parallel machines to minimise maximum lateness for the customer order problem," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(5), pages 926-936.
    4. Chang Sup Sung & Sang Hum Yoon, 1998. "Minimizing total weighted completion time at a pre-assembly stage composed of two feeding machines," International Journal of Production Economics, Elsevier, vol. 54(3), pages 247-255, May.
    5. Wang, Guoqing & Cheng, T.C. Edwin, 2007. "Customer order scheduling to minimize total weighted completion time," Omega, Elsevier, vol. 35(5), pages 623-626, October.
    6. Koulamas, Christos & Kyparisis, George J., 2007. "A note on the two-stage assembly flow shop scheduling problem with uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 182(2), pages 945-951, October.
    7. Leung, Joseph Y.-T. & Li, Haibing & Pinedo, Michael, 2006. "Scheduling orders for multiple product types with due date related objectives," European Journal of Operational Research, Elsevier, vol. 168(2), pages 370-389, January.
    8. F J Hwang & B M T Lin, 2012. "Two-stage assembly-type flowshop batch scheduling problem subject to a fixed job sequence," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(6), pages 839-845, June.
    9. Kovalyov, M. Y. & Potts, C. N. & Strusevich, V. A., 2004. "Batching decisions for assembly production systems," European Journal of Operational Research, Elsevier, vol. 157(3), pages 620-642, September.
    10. Xiaoqiang Cai & Xian Zhou, 2004. "Deterministic and stochastic scheduling with teamwork tasks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 818-840, September.
    11. Framinan, Jose M. & Perez-Gonzalez, Paz, 2018. "Order scheduling with tardiness objective: Improved approximate solutions," European Journal of Operational Research, Elsevier, vol. 266(3), pages 840-850.
    12. Jian Chen & George Q. Huang & Hao Luo & Junqiang Wang, 2015. "Synchronisation of production scheduling and shipment in an assembly flowshop," International Journal of Production Research, Taylor & Francis Journals, vol. 53(9), pages 2787-2802, May.
    13. Chung-Yee Lee & T. C. E. Cheng & B. M. T. Lin, 1993. "Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem," Management Science, INFORMS, vol. 39(5), pages 616-625, May.
    14. Joseph Leung & Haibing Li & Michael Pinedo, 2008. "Scheduling orders on either dedicated or flexible machines in parallel to minimize total weighted completion time," Annals of Operations Research, Springer, vol. 159(1), pages 107-123, March.
    15. Laub, Jeffrey D. & Fowler, John W. & Keha, Ahmet B., 2007. "Minimizing makespan with multiple-orders-per-job in a two-machine flowshop," European Journal of Operational Research, Elsevier, vol. 182(1), pages 63-79, October.
    16. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
    17. C. N. Potts & S. V. Sevast'janov & V. A. Strusevich & L. N. Van Wassenhove & C. M. Zwaneveld, 1995. "The Two-Stage Assembly Scheduling Problem: Complexity and Approximation," Operations Research, INFORMS, vol. 43(2), pages 346-355, April.
    18. Yokoyama, Masao, 2008. "Flow-shop scheduling with setup and assembly operations," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1184-1195, June.
    19. Yokoyama, Masao & Santos, Daryl L., 2005. "Three-stage flow-shop scheduling with assembly operations to minimize the weighted sum of product completion times," European Journal of Operational Research, Elsevier, vol. 161(3), pages 754-770, March.
    20. Sun, Xi & Morizawa, Kazuko & Nagasawa, Hiroyuki, 2003. "Powerful heuristics to minimize makespan in fixed, 3-machine, assembly-type flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 146(3), pages 498-516, May.
    21. Ching‐Jong Liao & Cheng‐Hsing Chuang, 1996. "Sequencing with setup time and order tardiness trade‐offs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(7), pages 971-984, October.
    22. Lin, B.M.T. & Kononov, A.V., 2007. "Customer order scheduling to minimize the number of late jobs," European Journal of Operational Research, Elsevier, vol. 183(2), pages 944-948, December.
    23. Jatinder Gupta & Johnny Ho & Jack van der Veen, 1997. "Single machine hierarchical scheduling with customer orders and multiple job classes," Annals of Operations Research, Springer, vol. 70(0), pages 127-143, April.
    24. Mason, Scott J. & Chen, Jen-Shiang, 2010. "Scheduling multiple orders per job in a single machine to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 207(1), pages 70-77, November.
    25. Wagneur, E. & Sriskandarajah, C., 1993. "Openshops with jobs overlap," European Journal of Operational Research, Elsevier, vol. 71(3), pages 366-378, December.
    26. Niloofar Shoaardebili & Parviz Fattahi, 2015. "Multi-objective meta-heuristics to solve three-stage assembly flow shop scheduling problem with machine availability constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 53(3), pages 944-968, February.
    27. George J. Kyparisis & Christos Koulamas, 2002. "Assembly-Line Scheduling with Concurrent Operations and Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 14(1), pages 68-80, February.
    28. Sung, C.S. & Kim, Hyun Ah, 2008. "A two-stage multiple-machine assembly scheduling problem for minimizing sum of completion times," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1038-1048, June.
    29. Lee, Ik Sun, 2013. "Minimizing total tardiness for the order scheduling problem," International Journal of Production Economics, Elsevier, vol. 144(1), pages 128-134.
    30. K. Wang & W.Q. Ma & H. Luo & H. Qin, 2016. "Coordinated scheduling of production and transportation in a two-stage assembly flowshop," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6891-6911, November.
    31. Asiye Aydilek & Harun Aydilek & Ali Allahverdi, 2017. "Minimising maximum tardiness in assembly flowshops with setup times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(24), pages 7541-7565, December.
    32. James Blocher & Dilip Chhajed, 2008. "Minimizing customer order lead-time in a two-stage assembly supply chain," Annals of Operations Research, Springer, vol. 161(1), pages 25-52, July.
    33. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    34. Pongcharoen, P. & Hicks, C. & Braiden, P. M. & Stewardson, D. J., 2002. "Determining optimum Genetic Algorithm parameters for scheduling the manufacturing and assembly of complex products," International Journal of Production Economics, Elsevier, vol. 78(3), pages 311-322, August.
    35. A.E. Gerodimos & C.A. Glass & C.N. Potts & T. Tautenhahn, 1999. "Scheduling multi‐operation jobs on a single machine," Annals of Operations Research, Springer, vol. 92(0), pages 87-105, January.
    36. Reza Ahmadi & Uttarayan Bagchi & Thomas A. Roemer, 2005. "Coordinated scheduling of customer orders for quick response," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 493-512, September.
    37. Gerodimos, Alex E. & Glass, Celia A. & Potts, Chris N., 2000. "Scheduling the production of two-component jobs on a single machine," European Journal of Operational Research, Elsevier, vol. 120(2), pages 250-259, January.
    38. Leung, Joseph Y.-T. & Lee, C.Y. & Ng, C.W. & Young, G.H., 2008. "Preemptive multiprocessor order scheduling to minimize total weighted flowtime," European Journal of Operational Research, Elsevier, vol. 190(1), pages 40-51, October.
    39. Zahra Tajbakhsh & Parviz Fattahi & Javad Behnamian, 2014. "Multi-objective assembly permutation flow shop scheduling problem: a mathematical model and a meta-heuristic algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(10), pages 1580-1592, October.
    40. Hariri, A. M. A. & Potts, C. N., 1997. "A branch and bound algorithm for the two-stage assembly scheduling problem," European Journal of Operational Research, Elsevier, vol. 103(3), pages 547-556, December.
    41. Zhongshun Shi & Zewen Huang & Leyuan Shi, 2018. "Customer order scheduling on batch processing machines with incompatible job families," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 795-808, January.
    42. Kolisch, Rainer & Heß, K., 2000. "Efficient methods for scheduling make-to-order assemblies under resource, assembly area and part availability constraints," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 7010, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    43. James D. Blocher & Dilip Chhajed, 1996. "The customer order lead‐time problem on parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(5), pages 629-654, August.
    44. Al-Anzi, Fawaz S. & Allahverdi, Ali, 2007. "A self-adaptive differential evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times," European Journal of Operational Research, Elsevier, vol. 182(1), pages 80-94, October.
    45. Joseph Y‐T. Leung & Haibing Li & Michael Pinedo, 2006. "Approximation algorithms for minimizing total weighted completion time of orders on identical machines in parallel," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 243-260, June.
    46. Ehsan Teymourian & Vahid Kayvanfar & GH. M. Komaki & Majtaba Khodarahmi, 2016. "An Enhanced Intelligent Water Drops Algorithm for Scheduling of an Agile Manufacturing System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 239-266, March.
    47. Yokoyama, Masao, 2001. "Hybrid flow-shop scheduling with assembly operations," International Journal of Production Economics, Elsevier, vol. 73(2), pages 103-116, September.
    48. Sung, Chang Sup & Juhn, Jaeho, 2009. "Makespan minimization for a 2-stage assembly scheduling problem subject to component available time constraint," International Journal of Production Economics, Elsevier, vol. 119(2), pages 392-401, June.
    49. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    50. G.M. Komaki & Ehsan Teymourian & Vahid Kayvanfar, 2016. "Minimising makespan in the two-stage assembly hybrid flow shop scheduling problem using artificial immune systems," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 963-983, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    2. Ren-Xia Chen & Shi-Sheng Li, 2020. "Minimizing maximum delivery completion time for order scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1044-1064, November.
    3. Onder Aydemir, 2021. "A New Performance Evaluation Metric for Classifiers: Polygon Area Metric," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 16-26, April.
    4. Zikai Zhang & Qiuhua Tang, 2022. "Integrating preventive maintenance to two-stage assembly flow shop scheduling: MILP model, constructive heuristics and meta-heuristics," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 156-203, March.
    5. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    6. Mac Cawley, Alejandro & Maturana, Sergio & Pascual, Rodrigo & Tortorella, Guilherme Luz, 2022. "Scheduling wine bottling operations with multiple lines and sequence-dependent set-up times: Robust formulation and a decomposition solution approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 819-839.
    7. Shaojun Lu & Jun Pei & Xinbao Liu & Xiaofei Qian & Nenad Mladenovic & Panos M. Pardalos, 2020. "Less is more: variable neighborhood search for integrated production and assembly in smart manufacturing," Journal of Scheduling, Springer, vol. 23(6), pages 649-664, December.
    8. Lung-Yu Li & Jian-You Xu & Shuenn-Ren Cheng & Xingong Zhang & Win-Chin Lin & Jia-Cheng Lin & Zong-Lin Wu & Chin-Chia Wu, 2022. "A Genetic Hyper-Heuristic for an Order Scheduling Problem with Two Scenario-Dependent Parameters in a Parallel-Machine Environment," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    9. Chin-Chia Wu & Jatinder N. D. Gupta & Win-Chin Lin & Shuenn-Ren Cheng & Yen-Lin Chiu & Juin-Han Chen & Long-Yuan Lee, 2022. "Robust Scheduling of Two-Agent Customer Orders with Scenario-Dependent Component Processing Times and Release Dates," Mathematics, MDPI, vol. 10(9), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lung-Yu Li & Jian-You Xu & Shuenn-Ren Cheng & Xingong Zhang & Win-Chin Lin & Jia-Cheng Lin & Zong-Lin Wu & Chin-Chia Wu, 2022. "A Genetic Hyper-Heuristic for an Order Scheduling Problem with Two Scenario-Dependent Parameters in a Parallel-Machine Environment," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    2. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    3. Ren-Xia Chen & Shi-Sheng Li, 2020. "Minimizing maximum delivery completion time for order scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1044-1064, November.
    4. Sheikh, Shaya & Komaki, G.M. & Kayvanfar, Vahid & Teymourian, Ehsan, 2019. "Multi-Stage assembly flow shop with setup time and release time," Operations Research Perspectives, Elsevier, vol. 6(C).
    5. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    6. Zikai Zhang & Qiuhua Tang, 2022. "Integrating preventive maintenance to two-stage assembly flow shop scheduling: MILP model, constructive heuristics and meta-heuristics," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 156-203, March.
    7. Sung, Chang Sup & Juhn, Jaeho, 2009. "Makespan minimization for a 2-stage assembly scheduling problem subject to component available time constraint," International Journal of Production Economics, Elsevier, vol. 119(2), pages 392-401, June.
    8. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
    9. Jian Chen & Meilin Wang & Xiang T. R. Kong & George Q. Huang & Qinyun Dai & Guoqiang Shi, 2019. "Manufacturing synchronization in a hybrid flowshop with dynamic order arrivals," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2659-2668, October.
    10. Sung, C.S. & Kim, Hyun Ah, 2008. "A two-stage multiple-machine assembly scheduling problem for minimizing sum of completion times," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1038-1048, June.
    11. Koulamas, Christos & Kyparisis, George J., 2007. "A note on the two-stage assembly flow shop scheduling problem with uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 182(2), pages 945-951, October.
    12. Yokoyama, Masao, 2008. "Flow-shop scheduling with setup and assembly operations," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1184-1195, June.
    13. James Blocher & Dilip Chhajed, 2008. "Minimizing customer order lead-time in a two-stage assembly supply chain," Annals of Operations Research, Springer, vol. 161(1), pages 25-52, July.
    14. Niloy J. Mukherjee & Subhash C. Sarin & Daniel A. Neira, 2023. "Lot streaming for a two-stage assembly system in the presence of handling costs," Journal of Scheduling, Springer, vol. 26(4), pages 335-351, August.
    15. Ehsan Teymourian & Vahid Kayvanfar & GH. M. Komaki & Majtaba Khodarahmi, 2016. "An Enhanced Intelligent Water Drops Algorithm for Scheduling of an Agile Manufacturing System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 239-266, March.
    16. Lee, Ik Sun, 2013. "Minimizing total tardiness for the order scheduling problem," International Journal of Production Economics, Elsevier, vol. 144(1), pages 128-134.
    17. Yoon, Sang Hum & Sung, Chang Sup, 2005. "Fixed pre-assembly scheduling on multiple fabrication machines," International Journal of Production Economics, Elsevier, vol. 96(1), pages 109-118, April.
    18. Joseph Leung & Haibing Li & Michael Pinedo, 2008. "Scheduling orders on either dedicated or flexible machines in parallel to minimize total weighted completion time," Annals of Operations Research, Springer, vol. 159(1), pages 107-123, March.
    19. Framinan, Jose M. & Perez-Gonzalez, Paz, 2018. "Order scheduling with tardiness objective: Improved approximate solutions," European Journal of Operational Research, Elsevier, vol. 266(3), pages 840-850.
    20. F. Hwang & M. Kovalyov & B. Lin, 2014. "Scheduling for fabrication and assembly in a two-machine flowshop with a fixed job sequence," Annals of Operations Research, Springer, vol. 217(1), pages 263-279, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:273:y:2019:i:2:p:401-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.