IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v35y2007i5p623-626.html
   My bibliography  Save this article

Customer order scheduling to minimize total weighted completion time

Author

Listed:
  • Wang, Guoqing
  • Cheng, T.C. Edwin

Abstract

In this paper we study the scheduling problem in which each customer order consists of several jobs of different types, which are to be processed on m facilities. Each facility is dedicated to the processing of only one type of jobs. All jobs of an order have to be delivered to the customer at the same time. The objective is to schedule all the orders to minimize the total weighted order completion time. While the problem has been shown to be unary NP-hard, we develop a heuristics to tackle the problem and analyze its worst-case performance.

Suggested Citation

  • Wang, Guoqing & Cheng, T.C. Edwin, 2007. "Customer order scheduling to minimize total weighted completion time," Omega, Elsevier, vol. 35(5), pages 623-626, October.
  • Handle: RePEc:eee:jomega:v:35:y:2007:i:5:p:623-626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(05)00138-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph Y-T. Leung & Haibing Li & Michael Pinedo, 2005. "Order Scheduling Models: An Overview," Springer Books, in: Graham Kendall & Edmund K. Burke & Sanja Petrovic & Michel Gendreau (ed.), Multidisciplinary Scheduling: Theory and Applications, pages 37-53, Springer.
    2. SKUTELLA, Martin, 1999. "Convex quadratic and semidefinite programming relaxations in scheduling," LIDAM Discussion Papers CORE 1999063, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Chang Sup Sung & Sang Hum Yoon, 1998. "Minimizing total weighted completion time at a pre-assembly stage composed of two feeding machines," International Journal of Production Economics, Elsevier, vol. 54(3), pages 247-255, May.
    4. Leung, Joseph Y-T. & Li, Haibing & Pinedo, Michael & Sriskandarajah, Chelliah, 2005. "Open shops with jobs overlap--revisited," European Journal of Operational Research, Elsevier, vol. 163(2), pages 569-571, June.
    5. Leslie A. Hall & Andreas S. Schulz & David B. Shmoys & Joel Wein, 1997. "Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 513-544, August.
    6. Wagneur, E. & Sriskandarajah, C., 1993. "Openshops with jobs overlap," European Journal of Operational Research, Elsevier, vol. 71(3), pages 366-378, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Framinan, Jose M. & Perez-Gonzalez, Paz, 2018. "Order scheduling with tardiness objective: Improved approximate solutions," European Journal of Operational Research, Elsevier, vol. 266(3), pages 840-850.
    2. Arsham, Hossein & Adlakha, Veena & Lev, Benjamin, 2009. "A simplified algebraic method for system of linear inequalities with LP applications," Omega, Elsevier, vol. 37(4), pages 876-882, August.
    3. Ren-Xia Chen & Shi-Sheng Li, 2020. "Minimizing maximum delivery completion time for order scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1044-1064, November.
    4. Lung-Yu Li & Jian-You Xu & Shuenn-Ren Cheng & Xingong Zhang & Win-Chin Lin & Jia-Cheng Lin & Zong-Lin Wu & Chin-Chia Wu, 2022. "A Genetic Hyper-Heuristic for an Order Scheduling Problem with Two Scenario-Dependent Parameters in a Parallel-Machine Environment," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    5. Jian Chen & Meilin Wang & Xiang T. R. Kong & George Q. Huang & Qinyun Dai & Guoqiang Shi, 2019. "Manufacturing synchronization in a hybrid flowshop with dynamic order arrivals," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2659-2668, October.
    6. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.
    7. Lee, Ik Sun, 2013. "Minimizing total tardiness for the order scheduling problem," International Journal of Production Economics, Elsevier, vol. 144(1), pages 128-134.
    8. Dalalah, Doraid & Lev, Benjamin, 2009. "Duality of the improved algebraic method (DIAM)," Omega, Elsevier, vol. 37(5), pages 1027-1035, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.
    2. Leung, Joseph Y.-T. & Lee, C.Y. & Ng, C.W. & Young, G.H., 2008. "Preemptive multiprocessor order scheduling to minimize total weighted flowtime," European Journal of Operational Research, Elsevier, vol. 190(1), pages 40-51, October.
    3. T.C. Edwin Cheng & Qingqin Nong & Chi To Ng, 2011. "Polynomial‐time approximation scheme for concurrent open shop scheduling with a fixed number of machines to minimize the total weighted completion time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 763-770, December.
    4. Leung, Joseph Y-T. & Li, Haibing & Pinedo, Michael & Sriskandarajah, Chelliah, 2005. "Open shops with jobs overlap--revisited," European Journal of Operational Research, Elsevier, vol. 163(2), pages 569-571, June.
    5. Joseph Leung & Haibing Li & Michael Pinedo, 2008. "Scheduling orders on either dedicated or flexible machines in parallel to minimize total weighted completion time," Annals of Operations Research, Springer, vol. 159(1), pages 107-123, March.
    6. Ren-Xia Chen & Shi-Sheng Li, 2020. "Minimizing maximum delivery completion time for order scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1044-1064, November.
    7. B. M. T. Lin & T. C. E. Cheng, 2011. "Scheduling with centralized and decentralized batching policies in concurrent open shops," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(1), pages 17-27, February.
    8. Lung-Yu Li & Jian-You Xu & Shuenn-Ren Cheng & Xingong Zhang & Win-Chin Lin & Jia-Cheng Lin & Zong-Lin Wu & Chin-Chia Wu, 2022. "A Genetic Hyper-Heuristic for an Order Scheduling Problem with Two Scenario-Dependent Parameters in a Parallel-Machine Environment," Mathematics, MDPI, vol. 10(21), pages 1-22, November.
    9. Leung, Joseph Y.-T. & Li, Haibing & Pinedo, Michael, 2006. "Scheduling orders for multiple product types with due date related objectives," European Journal of Operational Research, Elsevier, vol. 168(2), pages 370-389, January.
    10. Rolf H. Möhring & Andreas S. Schulz & Frederik Stork & Marc Uetz, 2003. "Solving Project Scheduling Problems by Minimum Cut Computations," Management Science, INFORMS, vol. 49(3), pages 330-350, March.
    11. Büsing, Christina & Goetzmann, Kai-Simon & Matuschke, Jannik & Stiller, Sebastian, 2017. "Reference points and approximation algorithms in multicriteria discrete optimization," European Journal of Operational Research, Elsevier, vol. 260(3), pages 829-840.
    12. Patrick Jaillet & Michael R. Wagner, 2006. "Online Routing Problems: Value of Advanced Information as Improved Competitive Ratios," Transportation Science, INFORMS, vol. 40(2), pages 200-210, May.
    13. Martin Skutella & Maxim Sviridenko & Marc Uetz, 2016. "Unrelated Machine Scheduling with Stochastic Processing Times," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 851-864, August.
    14. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    15. Husam Dauod & Nieqing Cao & Debiao Li & Jaehee Kim & Sang Won Yoon & Daehan Won, 2023. "An Order Scheduling Heuristic to Minimize the Total Collation Delays and the Makespan in High-Throughput Make-to-Order Manufacturing Systems," SN Operations Research Forum, Springer, vol. 4(2), pages 1-23, June.
    16. Dimitris Fotakis & Jannik Matuschke & Orestis Papadigenopoulos, 2023. "Malleable scheduling beyond identical machines," Journal of Scheduling, Springer, vol. 26(5), pages 425-442, October.
    17. Dengpan Liu & Sumit Sarkar & Chelliah Sriskandarajah, 2010. "Resource Allocation Policies for Personalization in Content Delivery Sites," Information Systems Research, INFORMS, vol. 21(2), pages 227-248, June.
    18. Han Hoogeveen & Petra Schuurman & Gerhard J. Woeginger, 2001. "Non-Approximability Results for Scheduling Problems with Minsum Criteria," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 157-168, May.
    19. J.M. van den Akker & C.A.J. Hurkens & M.W.P. Savelsbergh, 2000. "Time-Indexed Formulations for Machine Scheduling Problems: Column Generation," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 111-124, May.
    20. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:35:y:2007:i:5:p:623-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.