IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i2p728-742.html
   My bibliography  Save this article

A comparison of tail dependence estimators

Author

Listed:
  • Supper, Hendrik
  • Irresberger, Felix
  • Weiß, Gregor

Abstract

We review several commonly used methods for estimating the tail dependence in a given data sample. In simulations, we show that especially static estimators produce severely biased estimates of tail dependence when applied to samples with time-varying extreme dependence. In some instances, using static estimators for time-varying data leads to estimates more than twice as high as the true tail dependence. Our findings attenuate the need to account for the time-variation in extreme dependence by using dynamic models. Taking all simulations into account, the dynamic tail dependence estimators perform best with the Dynamic Symmetric Copula (DSC) taking the lead. We test our findings in an empirical study and show that the choice of estimator significantly affects the importance of tail dependence for asset prices.

Suggested Citation

  • Supper, Hendrik & Irresberger, Felix & Weiß, Gregor, 2020. "A comparison of tail dependence estimators," European Journal of Operational Research, Elsevier, vol. 284(2), pages 728-742.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:728-742
    DOI: 10.1016/j.ejor.2019.12.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719310811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.12.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:oup:rfinst:v:25:y::i:12:p:3711-3751 is not listed on IDEAS
    2. Rafael Schmidt & Ulrich Stadtmüller, 2006. "Non‐parametric Estimation of Tail Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 307-335, June.
    3. Weiß, Gregor N.F. & Neumann, Sascha & Bostandzic, Denefa, 2014. "Systemic risk and bank consolidation: International evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 165-181.
    4. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    5. Dong Hwan Oh & Andrew J. Patton, 2018. "Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 181-195, April.
    6. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    7. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    8. De Jonghe, Olivier, 2010. "Back to the basics in banking? A micro-analysis of banking system stability," Journal of Financial Intermediation, Elsevier, vol. 19(3), pages 387-417, July.
    9. Agarwal, Vikas & Ruenzi, Stefan & Weigert, Florian, 2017. "Tail risk in hedge funds: A unique view from portfolio holdings," Journal of Financial Economics, Elsevier, vol. 125(3), pages 610-636.
    10. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    11. Garcia, René & Tsafack, Georges, 2011. "Dependence structure and extreme comovements in international equity and bond markets," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1954-1970, August.
    12. Tianyang Wang & James S. Dyer, 2012. "A Copulas-Based Approach to Modeling Dependence in Decision Trees," Operations Research, INFORMS, vol. 60(1), pages 225-242, February.
    13. Irresberger, Felix & Weiß, Gregor N.F. & Gabrysch, Janet & Gabrysch, Sandra, 2018. "Liquidity tail risk and credit default swap spreads," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1137-1153.
    14. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    15. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    16. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    17. Okimoto, Tatsuyoshi, 2008. "New Evidence of Asymmetric Dependence Structures in International Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(3), pages 787-815, September.
    18. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    19. Silbermayr, Lena & Jammernegg, Werner & Kischka, Peter, 2017. "Inventory pooling with environmental constraints using copulas," European Journal of Operational Research, Elsevier, vol. 263(2), pages 479-492.
    20. Peter Christoffersen & Vihang Errunza & Kris Jacobs & Hugues Langlois, 2012. "Is the Potential for International Diversification Disappearing? A Dynamic Copula Approach," Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3711-3751.
    21. Eckert, Johanna & Gatzert, Nadine, 2018. "Risk- and value-based management for non-life insurers under solvency constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 761-774.
    22. Al Janabi, Mazin A.M. & Arreola Hernandez, Jose & Berger, Theo & Nguyen, Duc Khuong, 2017. "Multivariate dependence and portfolio optimization algorithms under illiquid market scenarios," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1121-1131.
    23. Ye, Wuyi & Liu, Xiaoquan & Miao, Baiqi, 2012. "Measuring the subprime crisis contagion: Evidence of change point analysis of copula functions," European Journal of Operational Research, Elsevier, vol. 222(1), pages 96-103.
    24. Kang, Byoung Uk & In, Francis & Kim, Gunky & Kim, Tong Suk, 2010. "A Longer Look at the Asymmetric Dependence between Hedge Funds and the Equity Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(3), pages 763-789, June.
    25. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    26. Fousseni Chabi-Yo & Markus Huggenberger & Florian Weigert, 2019. "Multivariate Crash Risk," Working Papers on Finance 1901, University of St. Gallen, School of Finance.
    27. Christian Meine & Hendrik Supper & Gregor N. F. Weiß, 2016. "Is Tail Risk Priced in Credit Default Swap Premia?," Review of Finance, European Finance Association, vol. 20(1), pages 287-336.
    28. Chabi-Yo, Fousseni & Ruenzi, Stefan & Weigert, Florian, 2018. "Crash Sensitivity and the Cross Section of Expected Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1059-1100, June.
    29. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    30. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. César Garcia-Gomez & Ana Pérez & Mercedes Prieto-Alaiz, 2022. "The evolution of poverty in the EU-28: a further look based on multivariate tail dependence," Working Papers 605, ECINEQ, Society for the Study of Economic Inequality.
    2. Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
    3. Wang, Haiying & Yuan, Ying & Li, Yiou & Wang, Xunhong, 2021. "Financial contagion and contagion channels in the forex market: A new approach via the dynamic mixture copula-extreme value theory," Economic Modelling, Elsevier, vol. 94(C), pages 401-414.
    4. Yfanti, Stavroula & Karanasos, Menelaos & Zopounidis, Constantin & Christopoulos, Apostolos, 2023. "Corporate credit risk counter-cyclical interdependence: A systematic analysis of cross-border and cross-sector correlation dynamics," European Journal of Operational Research, Elsevier, vol. 304(2), pages 813-831.
    5. Fjærvik, Thomas, 2023. "Crash risk in the Nordic Stock Market - a cross-sectional analysis," Discussion Papers 2023/5, Norwegian School of Economics, Department of Business and Management Science.
    6. Yuan, Ying & Wang, Haiying & Jin, Xiu, 2022. "Pandemic-driven financial contagion and investor behavior: Evidence from the COVID-19," International Review of Financial Analysis, Elsevier, vol. 83(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karl Friedrich Siburg & Christopher Strothmann & Gregor Wei{ss}, 2022. "Comparing and quantifying tail dependence," Papers 2208.10319, arXiv.org.
    2. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    3. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-78, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Mario Cerrato & John Crosby & Minjoo Kim & Yang Zhao, 2015. "Modeling Dependence Structure and Forecasting Market Risk with Dynamic Asymmetric Copula," Working Papers 2015_15, Business School - Economics, University of Glasgow.
    5. Michael A. Goldstein & Joseph McCarthy & Alexei G. Orlov, 2019. "The Core, Periphery, and Beyond: Stock Market Comovements among EU and Non‐EU Countries," The Financial Review, Eastern Finance Association, vol. 54(1), pages 5-56, February.
    6. Fei, Fei & Fuertes, Ana-Maria & Kalotychou, Elena, 2017. "Dependence in credit default swap and equity markets: Dynamic copula with Markov-switching," International Journal of Forecasting, Elsevier, vol. 33(3), pages 662-678.
    7. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
    8. Aepli, Matthias D. & Füss, Roland & Henriksen, Tom Erik S. & Paraschiv, Florentina, 2017. "Modeling the multivariate dynamic dependence structure of commodity futures portfolios," Journal of Commodity Markets, Elsevier, vol. 6(C), pages 66-87.
    9. Peter Christoffersen & Kris Jacobs & Xisong Jin & Hugues Langlois, 2013. "Dynamic Diversification in Corporate Credit," CREATES Research Papers 2013-46, Department of Economics and Business Economics, Aarhus University.
    10. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    11. Irresberger, Felix & Weiß, Gregor N.F. & Gabrysch, Janet & Gabrysch, Sandra, 2018. "Liquidity tail risk and credit default swap spreads," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1137-1153.
    12. Aepli, Matthias D. & Frauendorfer, Karl & Fuess, Roland & Paraschiv, Florentina, 2015. "Multivariate Dynamic Copula Models: Parameter Estimation and Forecast Evaluation," Working Papers on Finance 1513, University of St. Gallen, School of Finance.
    13. BenSaïda, Ahmed, 2018. "The contagion effect in European sovereign debt markets: A regime-switching vine copula approach," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 153-165.
    14. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    15. Tobias Eckernkemper, 2018. "Modeling Systemic Risk: Time-Varying Tail Dependence When Forecasting Marginal Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 63-117.
    16. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
    17. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    18. Weiß, Gregor N.F. & Bostandzic, Denefa & Neumann, Sascha, 2014. "What factors drive systemic risk during international financial crises?," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 78-96.
    19. Chollete, Loran & Ning, Cathy, 2010. "Asymmetric Dependence in US Financial Risk Factors?," UiS Working Papers in Economics and Finance 2011/2, University of Stavanger.
    20. Fjærvik, Thomas, 2023. "Crash risk in the Nordic Stock Market - a cross-sectional analysis," Discussion Papers 2023/5, Norwegian School of Economics, Department of Business and Management Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:2:p:728-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.