IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v260y2017i1p359-375.html
   My bibliography  Save this article

Decomposing the Luenberger–Hicks–Moorsteen Total Factor Productivity indicator: An application to U.S. agriculture

Author

Listed:
  • Ang, Frederic
  • Kerstens, Pieter Jan

Abstract

This paper introduces a decomposition of the additively complete Luenberger–Hicks–Moorsteen Total Factor Productivity indicator into the usual components: technical change, technical inefficiency change and scale inefficiency change. Our approach is general in that it does not require differentiability or convexity of the production technology. Using a nonparametric framework, the empirical application focuses on the agricultural sector at the state-level in the U.S. over the period 1960–2004. The results show that Luenberger–Hicks–Moorsteen productivity increased substantially in the considered period. This productivity growth is due to output growth rather than input decline, although the extent depends on the convexity assumption of the technology. Technical change is the main driver, while the role of technical inefficiency change and scale inefficiency change also depends on the convexity assumption of the technology.

Suggested Citation

  • Ang, Frederic & Kerstens, Pieter Jan, 2017. "Decomposing the Luenberger–Hicks–Moorsteen Total Factor Productivity indicator: An application to U.S. agriculture," European Journal of Operational Research, Elsevier, vol. 260(1), pages 359-375.
  • Handle: RePEc:eee:ejores:v:260:y:2017:i:1:p:359-375
    DOI: 10.1016/j.ejor.2016.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716310347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diewert, W. Erwin & Fox, Kevin J., 2014. "Reference technology sets, Free Disposal Hulls and productivity decompositions," Economics Letters, Elsevier, vol. 122(2), pages 238-242.
    2. Walter Briec & Nicolas Peypoch, 2007. "Biased Technical Change and Parallel Neutrality," Journal of Economics, Springer, vol. 92(3), pages 281-292, December.
    3. Bert Balk & Rolf Färe & Shawna Grosskopf, 2003. "The theory of economic price and quantity indicators," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(1), pages 149-164, December.
    4. Walter Briec & Kristiaan Kerstens & Nicolas Peypoch, 2012. "Exact Relations Between Four Definitions Of Productivity Indices And Indicators," Bulletin of Economic Research, Wiley Blackwell, vol. 64(2), pages 265-274, April.
    5. Shawna Grosskopf, 2003. "Some Remarks on Productivity and its Decompositions," Journal of Productivity Analysis, Springer, vol. 20(3), pages 459-474, November.
    6. Jaime A Manalo IV & Fredierick M. Saludez & Myriam G. Layaoen & Argie M. Pagdanganan & Jayson C. Berto & Christina A. Frediles & Katherine P. Balmeo & Jennifer D. Villaflor, 2016. "Climate-Smart Agriculture: Do Young People Care?," Asian Journal of Agriculture and Development, Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), vol. 13(1), pages 59-76, June.
    7. Henry Tulkens, 2006. "On FDH Efficiency Analysis: Some Methodological Issues and Applications to Retail Banking, Courts and Urban Transit," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 311-342, Springer.
    8. Niels Christian Petersen, 1990. "Data Envelopment Analysis on a Relaxed Set of Assumptions," Management Science, INFORMS, vol. 36(3), pages 305-314, March.
    9. R. Färe & S. Grosskopf & D. Njinkeu, 1988. "Note---On Piecewise Reference Technologies," Management Science, INFORMS, vol. 34(12), pages 1507-1511, December.
    10. W. Briec & K. Kerstens, 2009. "Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 55-73, April.
    11. Epure, Mircea & Kerstens, Kristiaan & Prior, Diego, 2011. "Bank productivity and performance groups: A decomposition approach based upon the Luenberger productivity indicator," European Journal of Operational Research, Elsevier, vol. 211(3), pages 630-641, June.
    12. Bjurek, Hans, 1996. " The Malmquist Total Factor Productivity Index," Scandinavian Journal of Economics, Wiley Blackwell, vol. 98(2), pages 303-313, June.
    13. Mircea Epure, 2016. "Benchmarking for routines and organizational knowledge: a managerial accounting approach with performance feedback," Journal of Productivity Analysis, Springer, vol. 46(1), pages 87-107, August.
    14. Walter Briec & Kristiaan Kerstens, 2004. "A Luenberger-Hicks-Moorsteen productivity indicator: its relation to the Hicks-Moorsteen productivity index and the Luenberger productivity indicator," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(4), pages 925-939, May.
    15. Cinzia Daraio & Léopold Simar, 2016. "Efficiency and benchmarking with directional distances: a data-driven approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(7), pages 928-944, July.
    16. Robert G. Chambers, 2002. "Exact nonradial input, output, and productivity measurement," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 20(4), pages 751-765.
    17. Shunsuke Managi, 2010. "Productivity measures and effects from subsidies and trade: an empirical analysis for Japan's forestry," Applied Economics, Taylor & Francis Journals, vol. 42(30), pages 3871-3883.
    18. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    19. Chambers, Robert G. & Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity Growth in APEC Countries," Working Papers 197843, University of Maryland, Department of Agricultural and Resource Economics.
    20. Aragon, Y. & Daouia, A. & Thomas-Agnan, C., 2005. "Nonparametric Frontier Estimation: A Conditional Quantile-Based Approach," Econometric Theory, Cambridge University Press, vol. 21(2), pages 358-389, April.
    21. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    22. Diewert, W. Erwin & Fox, Kevin J., 2017. "Decomposing productivity indexes into explanatory factors," European Journal of Operational Research, Elsevier, vol. 256(1), pages 275-291.
    23. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    24. Briec, Walter & Liang, Qi Bin, 2011. "On some semilattice structures for production technologies," European Journal of Operational Research, Elsevier, vol. 215(3), pages 740-749, December.
    25. Walter Briec & K. Kerstens, 2009. "Infeasibilities and directional distance functions: with application to the determinateness of the luenberger productivity indicator," Post-Print hal-00372560, HAL.
    26. Diewert, W. E., 1976. "Exact and superlative index numbers," Journal of Econometrics, Elsevier, vol. 4(2), pages 115-145, May.
    27. Laurens Cherchye & Timo Kuosmanen & Thierry Post, 2001. "FDH Directional Distance Functions with an Application to European Commercial Banks," Journal of Productivity Analysis, Springer, vol. 15(3), pages 201-215, January.
    28. Frederic Ang & Pieter Jan Kerstens, 2016. "To Mix or Specialise? A Coordination Productivity Indicator for English and Welsh farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 779-798, September.
    29. Mesbah Motamed & Lihong McPhail & Ryan Williams, 2016. "Corn Area Response to Local Ethanol Markets in the United States: A Grid Cell Level Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(3), pages 726-743.
    30. Ade Ibiwoye & Shunsuke Managi, 2008. "Productivity Change of Nigerian Insurance Companies: 1994–2005," African Development Review, African Development Bank, vol. 20(3), pages 505-528.
    31. Peter Bogetoft, 1996. "DEA on Relaxed Convexity Assumptions," Management Science, INFORMS, vol. 42(3), pages 457-465, March.
    32. David R. Just & Jaclyn D. Kropp, 2013. "Production Incentives from Static Decoupling: Land Use Exclusion Restrictions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(5), pages 1049-1067.
    33. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    34. Jose Zofio & C. A. Knox Lovell, 2001. "Graph efficiency and productivity measures: an application to US agriculture," Applied Economics, Taylor & Francis Journals, vol. 33(11), pages 1433-1442.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, Frederic & Kerstens, Pieter Jan, 2020. "A superlative indicator for the Luenberger-Hicks-Moorsteen productivity indicator: Theory and application," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1161-1173.
    2. Briec, Walter & Dumas, Audrey & Kerstens, Kristiaan & Stenger, Agathe, 2022. "Generalised commensurability properties of efficiency measures: Implications for productivity indicators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1481-1492.
    3. Tomas Balezentis & Kristiaan Kerstens & Zhiyang Shen, 2022. "Economic and Environmental Decomposition of Luenberger-Hicks-Moorsteen Total Factor Productivity Indicator: Empirical Analysis of Chinese Textile Firms With a Focus on Reporting Infeasibilities and Qu," Post-Print hal-03833245, HAL.
    4. Aparicio, Juan & Ortiz, Lidia & Santín, Daniel, 2021. "Comparing group performance over time through the Luenberger productivity indicator: An application to school ownership in European countries," European Journal of Operational Research, Elsevier, vol. 294(2), pages 651-672.
    5. Frederic Ang & Kristiaan Kerstens & Jafar Sadeghi, 2023. "Energy productivity and greenhouse gas emission intensity in Dutch dairy farms: A Hicks–Moorsteen by‐production approach under non‐convexity and convexity with equivalence results," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 492-509, June.
    6. Zhiyang Shen & Kristiaan Kerstens & Tomas Baležentis, 2023. "An environmental Luenberger–Hicks–Moorsteen total factor productivity indicator: empirical analysis considering undesirable outputs either as inputs or outputs, and attention for infeasibilities," Post-Print hal-04273656, HAL.
    7. Arnaud Abad & Paola Ravelojaona, 2020. "A Generalization of Environmental Productivity Analysis," Working Papers hal-02964799, HAL.
    8. Briec, Walter & Kerstens, Kristiaan, 2009. "The Luenberger productivity indicator: An economic specification leading to infeasibilities," Economic Modelling, Elsevier, vol. 26(3), pages 597-600, May.
    9. Kristiaan Kerstens & Jafar Sadeghi & Ignace Van de Woestyne & Linjia Zhang, 2022. "Malmquist productivity indices and plant capacity utilisation: new proposals and empirical application," Annals of Operations Research, Springer, vol. 315(1), pages 221-250, August.
    10. Chen, Xiaoqing & Kerstens, Kristiaan & Tsionas, Mike, 2024. "Does productivity change at all in Swedish district courts? Empirical analysis focusing on horizontal mergers," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    11. Arnaud Abad & Rabaozafy Louisa Andriamasy & Walter Briec, 2018. "Surplus measures and luenberger Hicks–Moorsteen productivity indicator," Journal of Economics, Springer, vol. 125(3), pages 279-308, November.
    12. Jin, Qianying & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2020. "Metafrontier productivity indices: Questioning the common convexification strategy," European Journal of Operational Research, Elsevier, vol. 283(2), pages 737-747.
    13. Frederic Ang & Pieter Jan Kerstens, 2018. "Superlative approximation of the Luenberger-Hicks-Moorsteen productivity indicator: Theory and application," IFRO Working Paper 2018/10, University of Copenhagen, Department of Food and Resource Economics.
    14. Aparicio, Juan & Garcia-Nove, Eva M. & Kapelko, Magdalena & Pastor, Jesus T., 2017. "Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis," Omega, Elsevier, vol. 72(C), pages 1-14.
    15. Arnaud Abad & Paola Ravelojaona, 2022. "A generalization of environmental productivity analysis," Post-Print hal-03592375, HAL.
    16. A. Abad & P. Ravelojaona, 2017. "Exponential environmental productivity index and indicators," Journal of Productivity Analysis, Springer, vol. 48(2), pages 147-166, December.
    17. Tomas Balezentis & Zhiyang Shen, 2017. "An environmental Luenberger-Hicks-Moorsteen. Total Factor Productivityindicator for OECD Countries," Working Papers 2017-EQM-02, IESEG School of Management.
    18. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2014. "Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data," European Journal of Operational Research, Elsevier, vol. 233(3), pages 749-758.
    19. Antonio Peyrache, 2014. "Hicks-Moorsteen versus Malmquist: a connection by means of a radial productivity index," Journal of Productivity Analysis, Springer, vol. 41(3), pages 435-442, June.
    20. W. Erwin Diewert & Kevin J. Fox, 2014. "Decomposing Bjurek Productivity Indexes into Explanatory Factors," Discussion Papers 2014-33, School of Economics, The University of New South Wales.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:260:y:2017:i:1:p:359-375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.