IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i2p383-389.html
   My bibliography  Save this article

Time-dependent MEXCLP with start-up and relocation cost

Author

Listed:
  • van den Berg, Pieter L.
  • Aardal, Karen

Abstract

In this paper we introduce a time-dependent probabilistic location model for Emergency Medical Service (EMS) vehicles. The goal is to maximize the expected coverage throughout the day and at the same time minimize the number of opened facilities and the number of relocations. We apply our model to both a randomly generated test instance and to data from the city of Amsterdam, the Netherlands. We see that time-dependent models can result in better solutions than time-independent models. Furthermore, we see that the current set of base locations in Amsterdam is not optimal. We can obtain higher coverage with even less base locations.

Suggested Citation

  • van den Berg, Pieter L. & Aardal, Karen, 2015. "Time-dependent MEXCLP with start-up and relocation cost," European Journal of Operational Research, Elsevier, vol. 242(2), pages 383-389.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:383-389
    DOI: 10.1016/j.ejor.2014.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714008170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark S. Daskin, 1983. "A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution," Transportation Science, INFORMS, vol. 17(1), pages 48-70, February.
    2. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    3. Repede, John F. & Bernardo, John J., 1994. "Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky," European Journal of Operational Research, Elsevier, vol. 75(3), pages 567-581, June.
    4. Schmid, Verena & Doerner, Karl F., 2010. "Ambulance location and relocation problems with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1293-1303, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Barneveld, Thije & Jagtenberg, Caroline & Bhulai, Sandjai & van der Mei, Rob, 2018. "Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation," Socio-Economic Planning Sciences, Elsevier, vol. 62(C), pages 129-142.
    2. KC, Kiran & Corcoran, Jonathan & Chhetri, Prem, 2020. "Measuring the spatial accessibility to fire stations using enhanced floating catchment method," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    3. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    4. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    5. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    6. Enayati, Shakiba & Mayorga, Maria E. & Rajagopalan, Hari K. & Saydam, Cem, 2018. "Real-time ambulance redeployment approach to improve service coverage with fair and restricted workload for EMS providers," Omega, Elsevier, vol. 79(C), pages 67-80.
    7. Wang, Wei & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2022. "EMS location-allocation problem under uncertainties," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    8. Pieter L van den Berg & Peter Fiskerstrand & Karen Aardal & Jørgen Einerkjær & Trond Thoresen & Jo Røislien, 2019. "Improving ambulance coverage in a mixed urban-rural region in Norway using mathematical modeling," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-14, April.
    9. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    10. Suriyaphong Nilsang & Chumpol Yuangyai & Chen-Yang Cheng & Udom Janjarassuk, 2019. "Locating an ambulance base by using social media: a case study in Bangkok," Annals of Operations Research, Springer, vol. 283(1), pages 497-516, December.
    11. Thije van Barneveld, 2016. "The Minimum Expected Penalty Relocation Problem for the Computation of Compliance Tables for Ambulance Vehicles," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 370-384, May.
    12. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    13. Ranon Jientrakul & Chumpol Yuangyai & Klongkwan Boonkul & Pakinai Chaicharoenwut & Suriyaphong Nilsang & Sittiporn Pimsakul, 2022. "Integrating Spatial Risk Factors with Social Media Data Analysis for an Ambulance Allocation Strategy: A Case Study in Bangkok," Sustainability, MDPI, vol. 14(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karl Schneeberger & Karl Doerner & Andrea Kurz & Michael Schilde, 2016. "Ambulance location and relocation models in a crisis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 1-27, March.
    2. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    3. Schmid, Verena, 2012. "Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 611-621.
    4. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    5. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    6. Shayesta Wajid & N. Nezamuddin, 2023. "Optimizing emergency services for road safety using a decomposition method: a case study of Delhi," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 155-173, March.
    7. Su, Qiang & Luo, Qinyi & Huang, Samuel H., 2015. "Cost-effective analyses for emergency medical services deployment: A case study in Shanghai," International Journal of Production Economics, Elsevier, vol. 163(C), pages 112-123.
    8. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    9. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    10. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    11. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    12. M Gendreau & G Laporte & F Semet, 2006. "The maximal expected coverage relocation problem for emergency vehicles," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 22-28, January.
    13. Soo-Haeng Cho & Hoon Jang & Taesik Lee & John Turner, 2014. "Simultaneous Location of Trauma Centers and Helicopters for Emergency Medical Service Planning," Operations Research, INFORMS, vol. 62(4), pages 751-771, August.
    14. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    15. Kaan Ozbay & Cem Iyigun & Melike Baykal-Gursoy & Weihua Xiao, 2013. "Probabilistic programming models for traffic incident management operations planning," Annals of Operations Research, Springer, vol. 203(1), pages 389-406, March.
    16. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    17. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    18. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    19. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    20. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:383-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.