IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v62y2018icp129-142.html
   My bibliography  Save this article

Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation

Author

Listed:
  • van Barneveld, Thije
  • Jagtenberg, Caroline
  • Bhulai, Sandjai
  • van der Mei, Rob

Abstract

Providers of Emergency Medical Services (EMS) are typically concerned with keeping response times short. A powerful means to ensure this, is to dynamically redistribute the ambulances over the region, depending on the current state of the system. In this paper, we provide new insight into how to optimally (re)distribute ambulances. We study the impact of (1) the frequency of redeployment decision moments, (2) the inclusion of busy ambulances in the state description of the system, and (3) the performance criterion on the quality of the distribution strategy. In addition, we consider the influence of the EMS crew workload, such as (4) chain relocations and (5) time bounds, on the execution of an ambulance relocation. To this end, we use trace-driven simulations based on a real dataset from ambulance providers in the Netherlands. In doing so, we differentiate between rural and urban regions, which typically face different challenges when it comes to EMS. Our results show that: (1) taking the classical 0–1 performance criterion for assessing the fraction of late arrivals only differs slightly from related response time criteria for evaluating the performance as a function of the response time, (2) adding more relocation decision moments is highly beneficial, particularly for rural areas, (3) considering ambulances involved in dropping off patients available for newly coming incidents reduces relocation times only slightly, and (4) simulation experiments for assessing move-up policies are highly preferable to simple mathematical models.

Suggested Citation

  • van Barneveld, Thije & Jagtenberg, Caroline & Bhulai, Sandjai & van der Mei, Rob, 2018. "Real-time ambulance relocation: Assessing real-time redeployment strategies for ambulance relocation," Socio-Economic Planning Sciences, Elsevier, vol. 62(C), pages 129-142.
  • Handle: RePEc:eee:soceps:v:62:y:2018:i:c:p:129-142
    DOI: 10.1016/j.seps.2017.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S003801211630026X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2017.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark S. Daskin, 1983. "A Maximum Expected Covering Location Model: Formulation, Properties and Heuristic Solution," Transportation Science, INFORMS, vol. 17(1), pages 48-70, February.
    2. Sudtachat, Kanchala & Mayorga, Maria E. & Mclay, Laura A., 2016. "A nested-compliance table policy for emergency medical service systems under relocation," Omega, Elsevier, vol. 58(C), pages 154-168.
    3. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    4. M Gendreau & G Laporte & F Semet, 2006. "The maximal expected coverage relocation problem for emergency vehicles," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 22-28, January.
    5. Rajan Batta & June M. Dolan & Nirup N. Krishnamurthy, 1989. "The Maximal Expected Covering Location Problem: Revisited," Transportation Science, INFORMS, vol. 23(4), pages 277-287, November.
    6. Thije van Barneveld, 2016. "The Minimum Expected Penalty Relocation Problem for the Computation of Compliance Tables for Ambulance Vehicles," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 370-384, May.
    7. T Andersson & P Värbrand, 2007. "Decision support tools for ambulance dispatch and relocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 195-201, February.
    8. van Barneveld, T.C. & Bhulai, S. & van der Mei, R.D., 2016. "The effect of ambulance relocations on the performance of ambulance service providers," European Journal of Operational Research, Elsevier, vol. 252(1), pages 257-269.
    9. Repede, John F. & Bernardo, John J., 1994. "Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky," European Journal of Operational Research, Elsevier, vol. 75(3), pages 567-581, June.
    10. Schmid, Verena & Doerner, Karl F., 2010. "Ambulance location and relocation problems with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1293-1303, December.
    11. van den Berg, Pieter L. & Aardal, Karen, 2015. "Time-dependent MEXCLP with start-up and relocation cost," European Journal of Operational Research, Elsevier, vol. 242(2), pages 383-389.
    12. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    13. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    14. T. C. Barneveld & S. Bhulai & R. D. Mei, 2017. "A dynamic ambulance management model for rural areas," Health Care Management Science, Springer, vol. 20(2), pages 165-186, June.
    15. Peter Kolesar & Warren E. Walker, 1974. "An Algorithm for the Dynamic Relocation of Fire Companies," Operations Research, INFORMS, vol. 22(2), pages 249-274, April.
    16. Matthew S. Maxwell & Mateo Restrepo & Shane G. Henderson & Huseyin Topaloglu, 2010. "Approximate Dynamic Programming for Ambulance Redeployment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 266-281, May.
    17. Oded Berman, 1981. "Dynamic Repositioning of Indistinguishable Service Units on Transportation Networks," Transportation Science, INFORMS, vol. 15(2), pages 115-136, May.
    18. Schmid, Verena, 2012. "Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 611-621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Acuna, Jorge A. & Zayas-Castro, José L. & Charkhgard, Hadi, 2020. "Ambulance allocation optimization model for the overcrowding problem in US emergency departments: A case study in Florida," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    2. Abreu, Paulo & Santos, Daniel & Barbosa-Povoa, Ana, 2023. "Data-driven forecasting for operational planning of emergency medical services," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    3. Akbari, Leilanaz & Kazemi, Ahmad & Salari, Majid, 2023. "Operational planning of vehicles for rescue and relief operations considering the unavailability of the relocated vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    4. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    2. Enayati, Shakiba & Mayorga, Maria E. & Rajagopalan, Hari K. & Saydam, Cem, 2018. "Real-time ambulance redeployment approach to improve service coverage with fair and restricted workload for EMS providers," Omega, Elsevier, vol. 79(C), pages 67-80.
    3. Thije van Barneveld, 2016. "The Minimum Expected Penalty Relocation Problem for the Computation of Compliance Tables for Ambulance Vehicles," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 370-384, May.
    4. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    5. Amir Ali Nasrollahzadeh & Amin Khademi & Maria E. Mayorga, 2018. "Real-Time Ambulance Dispatching and Relocation," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 467-480, July.
    6. Martin van Buuren & Caroline Jagtenberg & Thije van Barneveld & Rob van der Mei & Sandjai Bhulai, 2018. "Ambulance Dispatch Center Pilots Proactive Relocation Policies to Enhance Effectiveness," Interfaces, INFORMS, vol. 48(3), pages 235-246, June.
    7. Sudtachat, Kanchala & Mayorga, Maria E. & Mclay, Laura A., 2016. "A nested-compliance table policy for emergency medical service systems under relocation," Omega, Elsevier, vol. 58(C), pages 154-168.
    8. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    9. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    10. McCormack, Richard & Coates, Graham, 2015. "A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival," European Journal of Operational Research, Elsevier, vol. 247(1), pages 294-309.
    11. Caio Vitor Beojone & Regiane Máximo de Souza & Ana Paula Iannoni, 2021. "An Efficient Exact Hypercube Model with Fully Dedicated Servers," Transportation Science, INFORMS, vol. 55(1), pages 222-237, 1-2.
    12. T. C. Barneveld & S. Bhulai & R. D. Mei, 2017. "A dynamic ambulance management model for rural areas," Health Care Management Science, Springer, vol. 20(2), pages 165-186, June.
    13. Dmitrii Usanov & G.A. Guido Legemaate & Peter M. van de Ven & Rob D. van der Mei, 2019. "Fire truck relocation during major incidents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 105-122, March.
    14. van Barneveld, T.C. & Bhulai, S. & van der Mei, R.D., 2016. "The effect of ambulance relocations on the performance of ambulance service providers," European Journal of Operational Research, Elsevier, vol. 252(1), pages 257-269.
    15. Suriyaphong Nilsang & Chumpol Yuangyai & Chen-Yang Cheng & Udom Janjarassuk, 2019. "Locating an ambulance base by using social media: a case study in Bangkok," Annals of Operations Research, Springer, vol. 283(1), pages 497-516, December.
    16. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    17. Schmid, Verena, 2012. "Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 219(3), pages 611-621.
    18. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    19. Phillip R. Jenkins & Matthew J. Robbins & Brian J. Lunday, 2021. "Approximate Dynamic Programming for Military Medical Evacuation Dispatching Policies," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 2-26, January.
    20. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:62:y:2018:i:c:p:129-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.