IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v200y2010i3p733-746.html
   My bibliography  Save this article

Real-time control of freight forwarder transportation networks by integrating multimodal transport chains

Author

Listed:
  • Bock, Stefan

Abstract

Western European freight forwarders are continually being forced to increase the efficiency of their transportation processes because of the liberalization and deregulation of the European transport market. This paper proposes a new real-time-oriented control approach in order to expand load consolidation, reduce empty vehicle trips, and handle dynamic disturbances. This approach integrates multimodal transportation and multiple transshipments for the first time. Thus, it enables the flexible generation and adaptation of transportation processes. In order to be able to handle occurring disturbances, an optimization procedure that adapts the transportation processes is continually applied. Vehicle breakdowns or deceleration of vehicles, traffic congestion, and street blockages are integrated as possible disturbance scenarios. At the same time, dynamically incoming transportation requests are also dealt with. Moreover, cooperative agreements between freight forwarders, which are gaining increasing importance, are integrated by mapping hubs and external services. The efficiency of the new real-time approach is validated by several computational experiments. In particular, the use of the entire execution time for plan adaptation as well as the integration of multiple transshipments has shown promising results.

Suggested Citation

  • Bock, Stefan, 2010. "Real-time control of freight forwarder transportation networks by integrating multimodal transport chains," European Journal of Operational Research, Elsevier, vol. 200(3), pages 733-746, February.
  • Handle: RePEc:eee:ejores:v:200:y:2010:i:3:p:733-746
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00041-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    2. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2006. "Exploiting Knowledge About Future Demands for Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 40(2), pages 211-225, May.
    3. Bernhard Fleischmann & Martin Gietz & Stefan Gnutzmann, 2004. "Time-Varying Travel Times in Vehicle Routing," Transportation Science, INFORMS, vol. 38(2), pages 160-173, May.
    4. Bock, Stefan & Rosenberg, Otto & Brackel, Thomas van, 2006. "Controlling mixed-model assembly lines in real-time by using distributed systems," European Journal of Operational Research, Elsevier, vol. 168(3), pages 880-904, February.
    5. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    6. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    7. Mintsis, G. & Basbas, S. & Papaioannou, P. & Taxiltaris, C. & Tziavos, I. N., 2004. "Applications of GPS technology in the land transportation system," European Journal of Operational Research, Elsevier, vol. 152(2), pages 399-409, January.
    8. Quan Lu & Maged Dessouky, 2004. "An Exact Algorithm for the Multiple Vehicle Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 503-514, November.
    9. Nanry, William P. & Wesley Barnes, J., 2000. "Solving the pickup and delivery problem with time windows using reactive tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 107-121, February.
    10. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    11. Ghiani, Gianpaolo & Guerriero, Francesca & Laporte, Gilbert & Musmanno, Roberto, 2003. "Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies," European Journal of Operational Research, Elsevier, vol. 151(1), pages 1-11, November.
    12. Soumia Ichoua & Michel Gendreau & Jean-Yves Potvin, 2000. "Diversion Issues in Real-Time Vehicle Dispatching," Transportation Science, INFORMS, vol. 34(4), pages 426-438, November.
    13. Martin Savelsbergh & Marc Sol, 1998. "Drive: Dynamic Routing of Independent Vehicles," Operations Research, INFORMS, vol. 46(4), pages 474-490, August.
    14. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    15. Kai Gutenschwager & Christian Niklaus & Stefan Voß, 2004. "Dispatching of an Electric Monorail System: Applying Metaheuristics to an Online Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 434-446, November.
    16. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferrucci, Francesco & Bock, Stefan & Gendreau, Michel, 2013. "A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods," European Journal of Operational Research, Elsevier, vol. 225(1), pages 130-141.
    2. Thibault Delbart & Yves Molenbruch & Kris Braekers & An Caris, 2021. "Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    3. Fenling Feng & Qingya Zhang, 2015. "Multimodal Transport System Coevolution Model Based on Synergetic Theory," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-10, March.
    4. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    5. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    6. García, Javier & Florez, José E. & Torralba, Álvaro & Borrajo, Daniel & López, Carlos Linares & García-Olaya, Ángel & Sáenz, Juan, 2013. "Combining linear programming and automated planning to solve intermodal transportation problems," European Journal of Operational Research, Elsevier, vol. 227(1), pages 216-226.
    7. W. J. A. Heeswijk & M. R. K. Mes & J. M. J. Schutten & W. H. M. Zijm, 2018. "Freight consolidation in intermodal networks with reloads," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 452-485, September.
    8. Francesco Corman & Francesco Viti & Rudy R. Negenborn, 2017. "Equilibrium models in multimodal container transport systems," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 125-153, March.
    9. Sheng Teng Huang & Emrah Bulut & Okan Duru, 2019. "Service quality evaluation of international freight forwarders: an empirical research in East Asia," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-16, December.
    10. Michael Drexl, 2012. "Synchronization in Vehicle Routing---A Survey of VRPs with Multiple Synchronization Constraints," Transportation Science, INFORMS, vol. 46(3), pages 297-316, August.
    11. Michael Drexl, 2014. "A Generic Heuristic for Vehicle Routing Problems with Multiple Synchronization Constraints," Working Papers 1412, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 04 Nov 2014.
    12. Jiahao Zhao & Xiaoning Zhu & Li Wang, 2020. "Study on Scheme of Outbound Railway Container Organization in Rail-Water Intermodal Transportation," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    13. David Wolfinger & Fabien Tricoire & Karl F. Doerner, 2019. "A matheuristic for a multimodal long haul routing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 397-433, December.
    14. Harris, Irina & Wang, Yingli & Wang, Haiyang, 2015. "ICT in multimodal transport and technological trends: Unleashing potential for the future," International Journal of Production Economics, Elsevier, vol. 159(C), pages 88-103.
    15. Farzaneh Karami & Wim Vancroonenburg & Greet Vanden Berghe, 2020. "A periodic optimization approach to dynamic pickup and delivery problems with time windows," Journal of Scheduling, Springer, vol. 23(6), pages 711-731, December.
    16. Xian Cheng & Shaoyi Liao & Zhongsheng Hua, 2017. "A policy of picking up parcels for express courier service in dynamic environments," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2470-2488, May.
    17. Stefan Bock, 2016. "Finding optimal tour schedules on transportation paths under extended time window constraints," Journal of Scheduling, Springer, vol. 19(5), pages 527-546, October.
    18. Gumuskaya, Volkan & van Jaarsveld, Willem & Dijkman, Remco & Grefen, Paul & Veenstra, Albert, 2020. "Dynamic barge planning with stochastic container arrivals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    19. Li, Le & Negenborn, Rudy R. & De Schutter, Bart, 2017. "Distributed model predictive control for cooperative synchromodal freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 240-260.
    20. Bock, Stefan, 2015. "Solving the traveling repairman problem on a line with general processing times and deadlines," European Journal of Operational Research, Elsevier, vol. 244(3), pages 690-703.
    21. Hilde Heggen & Yves Molenbruch & An Caris & Kris Braekers, 2019. "Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage Decisions," Sustainability, MDPI, vol. 11(6), pages 1-36, March.
    22. Akyüz, M. Hakan & Dekker, Rommert & Sharif Azadeh, Shadi, 2023. "Partial and complete replanning of an intermodal logistic system under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    23. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    2. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    3. Ferrucci, Francesco & Bock, Stefan & Gendreau, Michel, 2013. "A pro-active real-time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods," European Journal of Operational Research, Elsevier, vol. 225(1), pages 130-141.
    4. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    5. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    6. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    7. Baris Yildiz & Martin Savelsbergh, 2019. "Provably High-Quality Solutions for the Meal Delivery Routing Problem," Transportation Science, INFORMS, vol. 53(5), pages 1372-1388, September.
    8. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
    9. Wohlgemuth, Sascha & Oloruntoba, Richard & Clausen, Uwe, 2012. "Dynamic vehicle routing with anticipation in disaster relief," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 261-271.
    10. Srour, F.J. & Agatz, N.A.H. & Oppen, J., 2014. "The Value of Inaccurate Advance Time Window Information in a Pick-up and Delivery Problem," ERIM Report Series Research in Management ERS-2014-002-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. E Angelelli & N Bianchessi & R Mansini & M G Speranza, 2010. "Comparison of policies in dynamic routing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 686-695, April.
    12. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    13. Xiang, Zhihai & Chu, Chengbin & Chen, Haoxun, 2008. "The study of a dynamic dial-a-ride problem under time-dependent and stochastic environments," European Journal of Operational Research, Elsevier, vol. 185(2), pages 534-551, March.
    14. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    15. Marlin W. Ulmer & Leonard Heilig & Stefan Voß, 2017. "On the Value and Challenge of Real-Time Information in Dynamic Dispatching of Service Vehicles," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 161-171, June.
    16. Zolfagharinia, Hossein & Haughton, Michael, 2016. "Effective truckload dispatch decision methods with incomplete advance load information," European Journal of Operational Research, Elsevier, vol. 252(1), pages 103-121.
    17. Chen, Lichun & Miller-Hooks, Elise, 2012. "Optimal team deployment in urban search and rescue," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 984-999.
    18. Le-Anh, T. & de Koster, M.B.M. & Yu, Y., 2006. "Performance Evaluation of Real-time Scheduling Approaches in Vehicle-based Internal Transport Systems," ERIM Report Series Research in Management ERS-2006-063-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    20. E. Angelelli & R. Mansini & M. Vindigni, 2016. "The Stochastic and Dynamic Traveling Purchaser Problem," Transportation Science, INFORMS, vol. 50(2), pages 642-658, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:200:y:2010:i:3:p:733-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.