Advanced Search
MyIDEAS: Login

Particle filters for continuous likelihood evaluation and maximisation

Contents:

Author Info

  • Malik, Sheheryar
  • Pitt, Michael K.
Registered author(s):

    Abstract

    In this paper, a method is introduced for approximating the likelihood for the unknown parameters of a state space model. The approximation converges to the true likelihood as the simulation size goes to infinity. In addition, the approximating likelihood is continuous as a function of the unknown parameters under rather general conditions. The approach advocated is fast and robust, and it avoids many of the pitfalls associated with current techniques based upon importance sampling. We assess the performance of the method by considering a linear state space model, comparing the results with the Kalman filter, which delivers the true likelihood. We also apply the method to a non-Gaussian state space model, the stochastic volatility model, finding that the approach is efficient and effective. Applications to continuous time finance models and latent panel data models are considered. Two different multivariate approaches are proposed. The neoclassical growth model is considered as an application.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0304407611001473
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Econometrics.

    Volume (Year): 165 (2011)
    Issue (Month): 2 ()
    Pages: 190-209

    as in new window
    Handle: RePEc:eee:econom:v:165:y:2011:i:2:p:190-209

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/jeconom

    Related research

    Keywords: Importance sampling; Volatility; Filtering; Particle filter; Simulation; SIR; State space;

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:165:y:2011:i:2:p:190-209. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.