IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v306y2015icp152-159.html
   My bibliography  Save this article

Using models and spatial analysis to analyze spatio-temporal variations of food provision and food potential across China's agro-ecosystems

Author

Listed:
  • Wang, Qing
  • Liu, Xuehua
  • Yue, Tianxiang
  • Wang, Chenliang
  • Wilson, John P.

Abstract

In order to better regionalize and discuss the rationality/irrationality of the spatial patterns China’ food provision, food production and population data was collected and GIS spatial analysis and modeling methods were used. Multi-level spatial analysis and contrast between North and South China was carried out from three aspects: (1) Ecosystem food provision potential (EFPP). Step-by-step-modifying models were constructed to assess EFPP, parameters including solar radiation, temperature, humidity, topography, soil, and landuse. (2) Conversion ratio of the EFPP (CRFP), representing the ratio of actual food production to the EFPP. High EFPP and low CRFP means high remaining food potential for future exploration (or protecting, increasing). (3) Population pressure of food provision (PPFP). PPFP was calculated based on food production, population, nutrition ingredient, and consumption standards. High PPFP means food deficiency. Results: (1) The EFPP in South and Southeast China is much higher than in the North regions, while the CRFP is the opposite; this means the South and Southeast China has more remaining food potential to explore (or to protect). CRFP in Northeast China is the highest (81%), indicating the food provision in Northeast China is approaching its maximum potential. In the future it is not wise to rely solely on food provision increases in North China, which may aggravate some problems like water shortage and ecosystem deterioration. (2) PPFP in the South and Southeast of China is much greater than in the North and has been rising, indicating that South and Southeast China have deficiency in food supply and is more and more dependent on food transportation from North China. It is necessary to preserve the fertile and high-yielding croplands as well as reclaim new food resources in the southern and eastern to improve its food self-sufficiency. From the above results, we can derive that the “North Grain to South” (NGS) pattern of China is irrational. This is in opposition to the present pattern of NGS but consistent with some other studies of domain experts, who also claim the NGS pattern may need adjustment.

Suggested Citation

  • Wang, Qing & Liu, Xuehua & Yue, Tianxiang & Wang, Chenliang & Wilson, John P., 2015. "Using models and spatial analysis to analyze spatio-temporal variations of food provision and food potential across China's agro-ecosystems," Ecological Modelling, Elsevier, vol. 306(C), pages 152-159.
  • Handle: RePEc:eee:ecomod:v:306:y:2015:i:c:p:152-159
    DOI: 10.1016/j.ecolmodel.2014.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014006152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duncan, R.C., 2002. "Food security and the world food situation," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 41, pages 2191-2213, Elsevier.
    2. Rozelle, Scott & Rosegrant, Mark W., 1997. "China's past, present, and future food economy: can China continue to meet the challenges?," Food Policy, Elsevier, vol. 22(3), pages 191-200, June.
    3. Hong Yang, 1998. "Trends in China's regional grain production and their implications," Agricultural Economics, International Association of Agricultural Economists, vol. 19(3), pages 309-325, December.
    4. Yang, Hong, 1998. "Trends in China's regional grain production and their implications," Agricultural Economics, Blackwell, vol. 19(3), pages 309-325, December.
    5. Gilland, Bernard, 2002. "World population and food supply: can food production keep pace with population growth in the next half-century?," Food Policy, Elsevier, vol. 27(1), pages 47-63, February.
    6. Chris Funk & Molly Brown, 2009. "Declining global per capita agricultural production and warming oceans threaten food security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(3), pages 271-289, September.
    7. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    8. Yue, Tian-Xiang & Tian, Yong-Zhong & Liu, Ji-Yuan & Fan, Ze-Meng, 2008. "Surface modeling of human carrying capacity of terrestrial ecosystems in China," Ecological Modelling, Elsevier, vol. 214(2), pages 168-180.
    9. Cao, Mingkui & Ma, Shijun & Han, Chunru, 1995. "Potential productivity and human carrying capacity of an agro-ecosystem: An analysis of food production potential of China," Agricultural Systems, Elsevier, vol. 47(4), pages 387-414.
    10. Khan, Shahbaz & Hanjra, Munir A. & Mu, Jianxin, 2009. "Water management and crop production for food security in China: A review," Agricultural Water Management, Elsevier, vol. 96(3), pages 349-360, March.
    11. Peng Gong, 2011. "China needs no foreign help to feed itself," Nature, Nature, vol. 474(7349), pages 7-7, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulin Jiang & Zhou Lu & Shuo Li & Yongdeng Lei & Qingquan Chu & Xiaogang Yin & Fu Chen, 2020. "Large-Scale and High-Resolution Crop Mapping in China Using Sentinel-2 Satellite Imagery," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    2. Yuan Yao & Guohua He & Wei Li & Yong Zhao & Haihong Li & Fan He, 2023. "Assessing the Influence of Water Conservancy Projects on China’s Reserve Resources for Cultivated Land," Land, MDPI, vol. 12(9), pages 1-20, September.
    3. Shouhong Xie & Jizhou Zhang & Xiaojing Li & Zhe Chen & Xiaoning Zhang & Xianli Xia, 2023. "Impact of Farmer Participation in Production Chain Outsourcing Services on Agricultural Output Level and Output Risk: Evidence from the Guanzhong Plain, China," Agriculture, MDPI, vol. 13(12), pages 1-18, December.
    4. CAO, Yu & Zou, Jie & Fang, Xiaoqian & Wang, Jiayi & Cao, Yu & Li, Guoyu, 2020. "Effect of land tenure fragmentation on the decision-making and scale of agricultural land transfer in China," Land Use Policy, Elsevier, vol. 99(C).
    5. Shengqiang Yang & Donglin Li & Heping Liao & Lin Zhu & Miaomiao Zhou & Zhicong Cai, 2023. "Analysis of the Balance between Supply and Demand of Arable Land in China Based on Food Security," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    6. Jiao Huang & Ze Liang & Shuyao Wu & Shuangcheng Li, 2019. "Grain Self-Sufficiency Capacity in China’s Metropolitan Areas under Rapid Urbanization: Trends and Regional Differences from 1990 to 2015," Sustainability, MDPI, vol. 11(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prashant Patil & Murali Krishna Gumma, 2018. "A Review of the Available Land Cover and Cropland Maps for South Asia," Agriculture, MDPI, vol. 8(7), pages 1-22, July.
    2. Jinglu Wu & Haiao Zeng & Hong Yu & Long Ma & Longsheng Xu & Boqiang Qin, 2012. "Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3601-3618, September.
    3. Yang, Hong & Zhang, Xiaohe & Zehnder, Alexander J. B., 2003. "Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture," Agricultural Water Management, Elsevier, vol. 61(2), pages 143-161, June.
    4. Shahbaz Mushtaq, 2012. "Exploring Synergies Between Hardware and Software Interventions on Water Savings in China: Farmers’ Response to Water Usage and Crop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3285-3300, September.
    5. Pelai, Ricardo & Hagerman, Shannon M. & Kozak, Robert, 2020. "Biotechnologies in agriculture and forestry: Governance insights from a comparative systematic review of barriers and recommendations," Forest Policy and Economics, Elsevier, vol. 117(C).
    6. Tukufu Zuberi & Kevin J.A. Thomas, "undated". "Demographic Projections, the Environment and Food Security in Sub-Saharan Africa," UNDP Africa Policy Notes 2012-001, United Nations Development Programme, Regional Bureau for Africa.
    7. Rahmani, Javad & Danesh-Yazdi, Mohammad, 2022. "Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin," Agricultural Water Management, Elsevier, vol. 270(C).
    8. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2022. "Sustainable Water Resources Management Assessment Frameworks (SWRM-AF) for Arid and Semi-Arid Regions: A Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    9. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    10. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    11. Liu, Yu & Guo, Lei & Huang, Ze & López-Vicente, Manuel & Wu, Gao-Lin, 2020. "Root morphological characteristics and soil water infiltration capacity in semi-arid artificial grassland soils," Agricultural Water Management, Elsevier, vol. 235(C).
    12. Clotilde Grandval & Jean-Christophe Bureau & Herve Guyomard & Laurence Roudart, 2006. "Panorama des analyses prospectives sur l'évolution de la sécurité alimentaire mondiale à l'horizon 2020-2030," Working Papers hal-02819396, HAL.
    13. Chhetri, Netra B. & Shrestha, Sundar S., 2004. "The Prospects Of Agricultural Adaptation To Climate Change: Climate-Technology Interaction In Rice -Wheat Cropping System In Nepal," 2004 Annual meeting, August 1-4, Denver, CO 20144, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Onwuka, Ifeanyi Onuka, 2017. "Reversing Nigeria’s Food Import Dependency - Agricultural Transformation," Agricultural Development, Sophia, vol. 2(1), pages 1-12.
    15. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    16. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Aduralere Opeyemi Oyelade & Onome Bright Oghenetega & Favour Eforuoku, 2020. "Labour Force Participation Rate and it Implications on Food Security, Fertility Rate and Economic Growth in West African Monetary Zone (WAMZ) Countries," Business & Management Compass, University of Economics Varna, issue 4, pages 444-458.
    18. Mumuh Muhsin Z. & Nina Herlina & Miftahul Falah & Etty Saringendyanti & Kunto Sofianto & Norlaila Md Zin, 2021. "Impact of Climate Change on Agriculture Sector of Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 138-144.
    19. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    20. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:306:y:2015:i:c:p:152-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.