IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v292y2014icp51-62.html
   My bibliography  Save this article

First 20 years of DNDC (DeNitrification DeComposition): Model evolution

Author

Listed:
  • Gilhespy, Sarah L.
  • Anthony, Steven
  • Cardenas, Laura
  • Chadwick, David
  • del Prado, Agustin
  • Li, Changsheng
  • Misselbrook, Thomas
  • Rees, Robert M.
  • Salas, William
  • Sanz-Cobena, Alberto
  • Smith, Pete
  • Tilston, Emma L.
  • Topp, Cairistiona F.E.
  • Vetter, Sylvia
  • Yeluripati, Jagadeesh B.

Abstract

Mathematical models, such as the DNDC (DeNitrification DeComposition) model, are powerful tools that are increasingly being used to examine the potential impacts of management and climate change in agriculture. DNDC can simulate the processes responsible for production, consumption and transport of nitrous oxide (N2O). During the last 20 years DNDC has been modified and adapted by various research groups around the world to suit specific purposes and circumstances. In this paper we review the different versions of the DNDC model including models developed for different ecosystems, e.g. Forest-DNDC, Forest-DNDC-Tropica, regionalised for different areas of the world, e.g. NZ-DNDC, UK-DNDC, modified to suit specific crops, e.g. DNDC-Rice, DNDC-CSW or modularised e.g. Mobile-DNDC, Landscape-DNDC. A ‘family tree’ and chronological history of the DNDC model is presented, outlining the main features of each version. A literature search was conducted and a survey sent out to c. 1500 model users worldwide to obtain information on the use and development of DNDC. Survey results highlight the many strengths of DNDC including the comparative ease with which the DNDC model can be used and the attractiveness of the graphical user interface. Identified weaknesses could be rectified by providing a more comprehensive user manual, version control and increasing model transparency in collaboration with the Global Research Alliance Modelling Platform (GRAMP), which has much to offer the DNDC user community in terms of promoting the use of DNDC and addressing the deficiencies in the present arrangements for the models’ stewardship.

Suggested Citation

  • Gilhespy, Sarah L. & Anthony, Steven & Cardenas, Laura & Chadwick, David & del Prado, Agustin & Li, Changsheng & Misselbrook, Thomas & Rees, Robert M. & Salas, William & Sanz-Cobena, Alberto & Smith, , 2014. "First 20 years of DNDC (DeNitrification DeComposition): Model evolution," Ecological Modelling, Elsevier, vol. 292(C), pages 51-62.
  • Handle: RePEc:eee:ecomod:v:292:y:2014:i:c:p:51-62
    DOI: 10.1016/j.ecolmodel.2014.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014004190
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    2. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    3. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    4. Lamers, Marc & Ingwersen, Joachim & Streck, Thilo, 2007. "Modelling N2O emission from a forest upland soil: A procedure for an automatic calibration of the biogeochemical model Forest-DNDC," Ecological Modelling, Elsevier, vol. 205(1), pages 52-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juhua Ding & Qiuan Zhu & Hanwei Li & Xiaolu Zhou & Weiguo Liu & Changhui Peng, 2022. "Contribution of Incorporating the Phosphorus Cycle into TRIPLEX-CNP to Improve the Quantification of Land Carbon Cycle," Land, MDPI, vol. 11(6), pages 1-22, May.
    2. De Pinto, Alessandro & Li, Man & Haruna, Akiko & Hyman, Glenn Graham & Martinez, Mario Andrés Londoño & Creamer, Bernardo & Kwon, Ho-Young & Garcia, Jhon Brayan Valencia & Tapasco, Jeimar & Martinez, , 2016. "Low Emission Development Strategies in Agriculture. An Agriculture, Forestry, and Other Land Uses (AFOLU) Perspective," World Development, Elsevier, vol. 87(C), pages 180-203.
    3. Yi Yang & Beibei Liu & Peng Wang & Wei‐Qiang Chen & Timothy M. Smith, 2020. "Toward sustainable climate change adaptation," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 318-330, April.
    4. John M. Antle & Seojin Cho & S. M. Hossein Tabatabaie & Roberto O. Valdivia, 2019. "Economic and environmental performance of dryland wheat-based farming systems in a 1.5 °C world," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 165-180, February.
    5. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2022. "A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Zhao, Zheng & Cao, Linkui & Deng, Jia & Sha, Zhimin & Chu, Changbin & Zhou, Deping & Wu, Shuhang & Lv, Weiguang, 2020. "Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model," Agricultural Systems, Elsevier, vol. 178(C).
    7. Ingraham, Peter A. & Salas, William A., 2019. "Assessing nitrous oxide and nitrate leaching mitigation potential in US corn crop systems using the DNDC model," Agricultural Systems, Elsevier, vol. 175(C), pages 79-87.
    8. Myrgiotis, Vasileios & Rees, Robert M. & Topp, Cairistiona F.E. & Williams, Mathew, 2018. "A systematic approach to identifying key parameters and processes in agroecosystem models," Ecological Modelling, Elsevier, vol. 368(C), pages 344-356.
    9. Leng, Xu & Li, Xianyue & Chen, Ning & Zhang, Jinjun & Guo, Yu & Ding, Zongjiang, 2021. "Evaluating the effects of biodegradable film mulching and topdressing nitrogen on nitrogen dynamic and utilization in the arid cornfield," Agricultural Water Management, Elsevier, vol. 258(C).
    10. Nittaya Cha-un & Amnat Chidthaisong & Kazuyuki Yagi & Sirintornthep Towprayoon, 2021. "Simulating the Long-Term Effects of Fertilizer and Water Management on Grain Yield and Methane Emissions of Paddy Rice in Thailand," Agriculture, MDPI, vol. 11(11), pages 1-22, November.
    11. Jing, Rui & Li, Yubing & Wang, Meng & Chachuat, Benoit & Lin, Jianyi & Guo, Miao, 2021. "Coupling biogeochemical simulation and mathematical optimisation towards eco-industrial energy systems design," Applied Energy, Elsevier, vol. 290(C).
    12. Mack, Sarah K. & Lane, Robert R. & Deng, Jia & Morris, James T. & Bauer, Julian J., 2023. "Wetland carbon models: Applications for wetland carbon commercialization," Ecological Modelling, Elsevier, vol. 476(C).
    13. Stephen C. Hagen & Grace Delgado & Peter Ingraham & Ian Cooke & Richard Emery & Justin P. Fisk & Lindsay Melendy & Thomas Olson & Shawn Patti & Nathanael Rubin & Beth Ziniti & Haixin Chen & William Sa, 2020. "Mapping Conservation Management Practices and Outcomes in the Corn Belt Using the Operational Tillage Information System (OpTIS) and the Denitrification–Decomposition (DNDC) Model," Land, MDPI, vol. 9(11), pages 1-23, October.
    14. Jing, Rui & Liu, Jiahui & Zhang, Haoran & Zhong, Fenglin & Liu, Yupeng & Lin, Jianyi, 2022. "Unlock the hidden potential of urban rooftop agrivoltaics energy-food-nexus," Energy, Elsevier, vol. 256(C).
    15. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    16. Zhen, Huayang & Qiao, Yuhui & Zhao, Haijun & Ju, Xuehai & Zanoli, Raffaele & Waqas, Muhammad Ahmed & Lun, Fei & Knudsen, Marie Trydeman, 2022. "Developing a conceptual model to quantify eco-compensation based on environmental and economic cost-benefit analysis for promoting the ecologically intensified agriculture," Ecosystem Services, Elsevier, vol. 56(C).
    17. Xiaobo Xue Romeiko & Zhijian Guo & Yulei Pang & Eun Kyung Lee & Xuesong Zhang, 2020. "Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production," Sustainability, MDPI, vol. 12(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hari Wahyu Wijayanto & Kai-An Lo & Hery Toiba & Moh Shadiqur Rahman, 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia," Sustainability, MDPI, vol. 14(16), pages 1-10, August.
    2. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    3. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    4. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    5. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    6. Soy-Massoni, Emma & Langemeyer, Johannes & Varga, Diego & Sáez, Marc & Pintó, Josep, 2016. "The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia," Ecosystem Services, Elsevier, vol. 17(C), pages 43-52.
    7. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    8. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    9. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.
    10. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    11. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    12. Saw Min & Martin Rulík, 2020. "Comparison of Carbon Dioxide (CO 2 ) Fluxes between Conventional and Conserved Irrigated Rice Paddy Fields in Myanmar," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    13. Connor, Melanie & de Guia, Annalyn H. & Quilloy, Reianne & Van Nguyen, Hung & Gummert, Martin & Sander, Bjoern Ole, 2020. "When climate change is not psychologically distant – Factors influencing the acceptance of sustainable farming practices in the Mekong river Delta of Vietnam," World Development Perspectives, Elsevier, vol. 18(C).
    14. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    15. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    16. Kerstin Jantke & Martina J. Hartmann & Livia Rasche & Benjamin Blanz & Uwe A. Schneider, 2020. "Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers," Land, MDPI, vol. 9(5), pages 1-13, April.
    17. Song, Guobao & Song, Jie & Zhang, Shushen, 2016. "Modelling the policies of optimal straw use for maximum mitigation of climate change in China from a system perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 789-810.
    18. Kathrin Hasler & Hans-Werner Olfs & Onno Omta & Stefanie Bröring, 2016. "Drivers for the Adoption of Eco-Innovations in the German Fertilizer Supply Chain," Sustainability, MDPI, vol. 8(8), pages 1-18, July.
    19. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, vol. 7(12), pages 1-21, December.
    20. Maraseni, Tek Narayan & Cockfield, Geoff, 2015. "The financial implications of converting farmland to state-supported environmental plantings in the Darling Downs region, Queensland," Agricultural Systems, Elsevier, vol. 135(C), pages 57-65.

    More about this item

    Keywords

    Biogeochemistry; Process model; N2O; DNDC; Greenhouse gases; Emissions;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:292:y:2014:i:c:p:51-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.