IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v273y2014icp284-298.html
   My bibliography  Save this article

Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems

Author

Listed:
  • Bert, Federico E.
  • Rovere, Santiago L.
  • Macal, Charles M.
  • North, Michael J.
  • Podestá, Guillermo P.

Abstract

There are few published examples of comprehensively validated large-scale land-use agent-based models (ABMs). We present guidelines for doing so, and provide an example in the context of the Pampas Model (PM), an ABM aimed to explore the dynamics of structural and land use changes in the agricultural systems of the Argentine Pampas. Many complementary strategies are proposed for validation of ABM's. We adopted a validation framework that relies on two main streams: (a) validation of model processes and components during model development, which involved a literature survey, design based on similar models, involvement of stakeholders, and focused test scenarios and (b) empirical validation, which involved comparisons of model outputs from multiple realistic simulations against real world data. The design process ensured a realistic model ontology and representative behavioral rules. As result, we obtained reasonable outcomes from a set of initial and simplified scenarios: the PM successfully reproduced the direction of the primary observed structural and land tenure patterns, even before calibration. The empirical validation process lead to tuning and further development of the PM. After this, the PM was able to reproduce not only the direction but also the magnitude of the observed changes. The main lesson from our validation process is the need for multiple validation strategies, including empirical validation. Approaches intended to validate model processes and components may lead to structurally realistic models. However, some kind of subsequent empirical validation is needed to assess the model's ability to reproduce observed results.

Suggested Citation

  • Bert, Federico E. & Rovere, Santiago L. & Macal, Charles M. & North, Michael J. & Podestá, Guillermo P., 2014. "Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems," Ecological Modelling, Elsevier, vol. 273(C), pages 284-298.
  • Handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:284-298
    DOI: 10.1016/j.ecolmodel.2013.11.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013005723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.11.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Happe, Kathrin & Balmann, Alfons & Kellermann, Konrad & Sahrbacher, Christoph, 2008. "Does structure matter? The impact of switching the agricultural policy regime on farm structures," Journal of Economic Behavior & Organization, Elsevier, vol. 67(2), pages 431-444, August.
    2. Warren Thorngate & Bruce Edmonds, 2013. "Measuring Simulation-Observation Fit: An Introduction to Ordinal Pattern Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 16(2), pages 1-4.
    3. G. Fagiolo & C. Birchenhall & P. Windrum, 2007. "Empirical Validation in Agent-based Models: Introduction to the Special Issue," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 189-194, October.
    4. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    5. Happe, Kathrin & Balmann, Alfons & Kellermann, Konrad, 2004. "The agricultural policy simulator (AgriPoliS): an agent-based model to study structural change in agriculture (Version 1.0)," IAMO Discussion Papers 71, Leibniz Institute of Agricultural Development in Transition Economies (IAMO).
    6. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    7. J. Gareth Polhill & Lee-Ann Sutherland & Nicholas M. Gotts, 2010. "Using Qualitative Evidence to Enhance an Agent-Based Modelling System for Studying Land Use Change," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(2), pages 1-10.
    8. Theresa K. Lant, 1992. "Aspiration Level Adaptation: An Empirical Exploration," Management Science, INFORMS, vol. 38(5), pages 623-644, May.
    9. Olivier Barreteau, 2003. "Our Companion Modelling Approach," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 6(2), pages 1-1.
    10. Kellermann, Konrad & Sahrbacher, Christoph & Balmann, Alfons, 2008. "Land Markets In Agent Based Models Of Structural Change," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6647, European Association of Agricultural Economists.
    11. Marcos Gallacher, 2010. "The changing structure of production: Argentine agriculture 1988-2002," Económica, Departamento de Economía, Facultad de Ciencias Económicas, Universidad Nacional de La Plata, vol. 0, pages 3-28, January-D.
    12. Bert, Federico E. & Podestá, Guillermo P. & Rovere, Santiago L. & Menéndez, Ángel N. & North, Michael & Tatara, Eric & Laciana, Carlos E. & Weber, Elke & Toranzo, Fernando Ruiz, 2011. "An agent based model to simulate structural and land use changes in agricultural systems of the argentine pampas," Ecological Modelling, Elsevier, vol. 222(19), pages 3486-3499.
    13. Berger, Thomas, 2001. "Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 245-260, September.
    14. Berger, Thomas & Schreinemachers, Pepijn & Woelcke, Johannes, 2006. "Multi-agent simulation for the targeting of development policies in less-favored areas," Agricultural Systems, Elsevier, vol. 88(1), pages 28-43, April.
    15. Ellen Goddard & Alfons Weersink & Kevin Chen & Calum G. Turvey, 1993. "Economics of Structural Change in Agriculture," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 41(4), pages 475-489, December.
    16. Brian Heath & Raymond Hill & Frank Ciarallo, 2009. "A Survey of Agent-Based Modeling Practices (January 1998 to July 2008)," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-9.
    17. Hare, M & Deadman, P, 2004. "Further towards a taxonomy of agent-based simulation models in environmental management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(1), pages 25-40.
    18. Andrea Zimmermann & Thomas Heckelei, 2012. "Structural Change of European Dairy Farms – A Cross-Regional Analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(3), pages 576-603, September.
    19. Enrico Diecidue & Jeroen van de Ven, 2008. "Aspiration Level, Probability Of Success And Failure, And Expected Utility," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(2), pages 683-700, May.
    20. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    21. Giorgio Fagiolo & Alessio Moneta & Paul Windrum, 2007. "A Critical Guide to Empirical Validation of Agent-Based Models in Economics: Methodologies, Procedures, and Open Problems," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 195-226, October.
    22. Tyler Freeman & James Nolan & Richard Schoney, 2009. "An Agent‐Based Simulation Model of Structural Change in Canadian Prairie Agriculture, 1960–2000," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 537-554, December.
    23. Matin Qaim & Greg Traxler, 2005. "Roundup Ready soybeans in Argentina: farm level and aggregate welfare effects," Agricultural Economics, International Association of Agricultural Economists, vol. 32(1), pages 73-86, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diego Ferraro & Daniela Blanco & Sebasti'an Pessah & Rodrigo Castro, 2021. "Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach," Papers 2109.01031, arXiv.org, revised Sep 2021.
    2. Molood Ale Ebrahim Dehkordi & Amineh Ghorbani & Giangiacomo Bravo & Mike Farjam & René van Weeren & Anders Forsman & Tine De Moor, 2021. "Long-Term Dynamics of Institutions: Using ABM as a Complementary Tool to Support Theory Development in Historical Studies," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(4), pages 1-7.
    3. Jimena Gonzalez-Ramirez & Poonam Arora & Guillermo Podesta, 2018. "Using Insights from Prospect Theory to Enhance Sustainable Decision Making by Agribusinesses in Argentina," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    4. Taghikhah, Firouzeh & Voinov, Alexey & Shukla, Nagesh & Filatova, Tatiana & Anufriev, Mikhail, 2021. "Integrated modeling of extended agro-food supply chains: A systems approach," European Journal of Operational Research, Elsevier, vol. 288(3), pages 852-868.
    5. Johanna CHOUMERT & Pascale PHELINAS, 2015. "Farmland Rental Values in GM Soybean Areas of Argentina: Do Contractual Arrangements Matter?," Working Papers 201532, CERDI.
    6. Rebecca Kariuki & Simon Willcock & Rob Marchant, 2018. "Rangeland Livelihood Strategies under Varying Climate Regimes: Model Insights from Southern Kenya," Land, MDPI, vol. 7(2), pages 1-22, April.
    7. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    8. Lisa Huber & Nico Bahro & Georg Leitinger & Ulrike Tappeiner & Ulrich Strasser, 2019. "Agent-Based Modelling of a Coupled Water Demand and Supply System at the Catchment Scale," Sustainability, MDPI, vol. 11(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bert, Federico E. & Podestá, Guillermo P. & Rovere, Santiago L. & Menéndez, Ángel N. & North, Michael & Tatara, Eric & Laciana, Carlos E. & Weber, Elke & Toranzo, Fernando Ruiz, 2011. "An agent based model to simulate structural and land use changes in agricultural systems of the argentine pampas," Ecological Modelling, Elsevier, vol. 222(19), pages 3486-3499.
    2. Diego Ferraro & Daniela Blanco & Sebasti'an Pessah & Rodrigo Castro, 2021. "Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach," Papers 2109.01031, arXiv.org, revised Sep 2021.
    3. Hossein Sabzian & Mohammad Ali Shafia & Ali Maleki & Seyeed Mostapha Seyeed Hashemi & Ali Baghaei & Hossein Gharib, 2019. "Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners," Papers 1901.08932, arXiv.org.
    4. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    5. Ngo-Hoang, Dai-Long, 2019. "A research paper of Hossein Sabzian (2019), Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners, ArXiv, 54p," AgriXiv xutyz, Center for Open Science.
    6. Hossein Sabzian & Mohammad Ali Shafia & Mehdi Ghazanfari & Ali Bonyadi Naeini, 2020. "Modeling the Adoption and Diffusion of Mobile Telecommunications Technologies in Iran: A Computational Approach Based on Agent-Based Modeling and Social Network Theory," Sustainability, MDPI, vol. 12(7), pages 1-36, April.
    7. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    8. Latynskiy, Evgeny & Berger, Thomas, 2015. "UTZ certification for groups of smallholder coffee farmers: Hype of hope?," 2015 Conference, August 9-14, 2015, Milan, Italy 229069, International Association of Agricultural Economists.
    9. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.
    10. Yamashita, Ryohei & Hoshino, Satoshi, 2018. "Development of an agent-based model for estimation of agricultural land preservation in rural Japan," Agricultural Systems, Elsevier, vol. 164(C), pages 264-276.
    11. Dimitris Kremmydas, 2012. "Agent based modeling for agricultural policy evaluation: A review," Working Papers 2012-3, Agricultural University of Athens, Department Of Agricultural Economics.
    12. Kukacka, Jiri & Jang, Tae-Seok & Sacht, Stephen, 2018. "On the estimation of behavioral macroeconomic models via simulated maximum likelihood," Economics Working Papers 2018-11, Christian-Albrechts-University of Kiel, Department of Economics.
    13. Juan Manuel Larrosa, 2016. "Agentes computacionales y análisis económico," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 18(34), pages 87-113, January-J.
    14. Dieter Pennerstorfer, 2022. "Farm exits and competition on the land market: Evidence from spatially explicit data," Economics working papers 2022-09, Department of Economics, Johannes Kepler University Linz, Austria.
    15. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    16. Gomes, Sharlene L. & Hermans, Leon M. & Thissen, Wil A.H., 2018. "Extending community operational research to address institutional aspects of societal problems: Experiences from peri-urban Bangladesh," European Journal of Operational Research, Elsevier, vol. 268(3), pages 904-917.
    17. Elodie Letort & Pierre Dupraz & Laurent Piet, 2017. "The impact of environmental regulations on the farmland market and farm structures: An agent-based model applied to the Brittany region of France," Working Papers SMART 17-01, INRAE UMR SMART.
    18. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    19. Marc Deissenroth & Martin Klein & Kristina Nienhaus & Matthias Reeg, 2017. "Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration," Complexity, Hindawi, vol. 2017, pages 1-24, December.
    20. G. Fagiolo & A. Roventini, 2009. "On the Scientific Status of Economic Policy: A Tale of Alternative Paradigms," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 6.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:273:y:2014:i:c:p:284-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.