IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v255y2013icp29-37.html
   My bibliography  Save this article

Flexible continuous-time modelling for heterogeneous animal movement

Author

Listed:
  • Harris, Keith J.
  • Blackwell, Paul G.

Abstract

We describe a flexible class of continuous-time models for animal movement, allowing movement behaviour to depend on location in terms of a discrete set of regions and also on an underlying behavioural state. We demonstrate the ability of these models to represent complex behaviour and spatial heterogeneity, as found in real movement studies, while retaining tractability and the conceptual advantages of a continuous-time formulation. We discuss the relationship between the models defined here and a range of important applications, both when movement behaviour is the main focus and when it is essentially a nuisance process, for example in spatially explicit capture–recapture.

Suggested Citation

  • Harris, Keith J. & Blackwell, Paul G., 2013. "Flexible continuous-time modelling for heterogeneous animal movement," Ecological Modelling, Elsevier, vol. 255(C), pages 29-37.
  • Handle: RePEc:eee:ecomod:v:255:y:2013:i:c:p:29-37
    DOI: 10.1016/j.ecolmodel.2013.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013000471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brockwell, P. J. & Hyndman, R. J., 1992. "On continuous-time threshold autoregression," International Journal of Forecasting, Elsevier, vol. 8(2), pages 157-173, October.
    2. P. G. Blackwell, 2003. "Bayesian inference for Markov processes with diffusion and discrete components," Biometrika, Biometrika Trust, vol. 90(3), pages 613-627, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mu Niu & Fay Frost & Jordan E. Milner & Anna Skarin & Paul G. Blackwell, 2022. "Modelling group movement with behaviour switching in continuous time," Biometrics, The International Biometric Society, vol. 78(1), pages 286-299, March.
    2. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    3. A. Parton & P. G. Blackwell, 2017. "Bayesian Inference for Multistate ‘Step and Turn’ Animal Movement in Continuous Time," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 373-392, September.
    4. Michael A. Spence & Evalyne W. Muiruri & David L. Maxwell & Scott Davis & Dave Sheahan, 2021. "The application of continuous‐time Markov chain models in the analysis of choice flume experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1103-1123, August.
    5. Toby A. Patterson & Alison Parton & Roland Langrock & Paul G. Blackwell & Len Thomas & Ruth King, 2017. "Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 399-438, October.
    6. James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    2. Théo Michelot & Paul G. Blackwell & Simon Chamaillé‐Jammes & Jason Matthiopoulos, 2020. "Inference in MCMC step selection models," Biometrics, The International Biometric Society, vol. 76(2), pages 438-447, June.
    3. Ann E. McKellar & Roland Langrock & Jeffrey R. Walters & Dylan C. Kesler, 2015. "Using mixed hidden Markov models to examine behavioral states in a cooperatively breeding bird," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(1), pages 148-157.
    4. Rosen, Ori & Thompson, Wesley K., 2009. "A Bayesian regression model for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3773-3786, September.
    5. P. Brockwell & O. Stramer, 1995. "On the approximation of continuous time threshold ARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(1), pages 1-20, January.
    6. Su, Fei & Chan, Kung-Sik, 2015. "Quasi-likelihood estimation of a threshold diffusion process," Journal of Econometrics, Elsevier, vol. 189(2), pages 473-484.
    7. J-P.Guironnet, 2006. "Analyse cliométrique des cycles de croissance de l'éducation en France (1815-2003): vers un modèle à seuil autorégressif," Economies et Sociétés (Serie 'Histoire Economique Quantitative'), Association Française de Cliométrie (AFC), issue 34, pages 193-214, February.
    8. Kim, Yongku & Berliner, L. Mark, 2016. "Change of spatiotemporal scale in dynamic models," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 80-92.
    9. Lingohr, Daniel & Müller, Gernot, 2019. "Stochastic modeling of intraday photovoltaic power generation," Energy Economics, Elsevier, vol. 81(C), pages 175-186.
    10. Devin S. Johnson & Dana L. Thomas & Jay M. Ver Hoef & Aaron Christ, 2008. "A General Framework for the Analysis of Animal Resource Selection from Telemetry Data," Biometrics, The International Biometric Society, vol. 64(3), pages 968-976, September.
    11. Mu Niu & Fay Frost & Jordan E. Milner & Anna Skarin & Paul G. Blackwell, 2022. "Modelling group movement with behaviour switching in continuous time," Biometrics, The International Biometric Society, vol. 78(1), pages 286-299, March.
    12. Zaineb L. Boulil & John W. Durban & Holly Fearnbach & Trevor W. Joyce & Samantha G. M. Leander & Henry R. Scharf, 2023. "Detecting Changes in Dynamic Social Networks Using Multiply-Labeled Movement Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 243-259, June.
    13. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    14. A. Parton & P. G. Blackwell, 2017. "Bayesian Inference for Multistate ‘Step and Turn’ Animal Movement in Continuous Time," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 373-392, September.
    15. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    16. Toby A. Patterson & Alison Parton & Roland Langrock & Paul G. Blackwell & Len Thomas & Ruth King, 2017. "Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 399-438, October.
    17. Chan, K. S. & Stramer, O., 1998. "Weak consistency of the Euler method for numerically solving stochastic differential equations with discontinuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 33-44, August.
    18. Siu, Tak Kuen, 2016. "A self-exciting threshold jump–diffusion model for option valuation," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 168-193.
    19. Trung Dung Tran & Emmanuel Lesaffre & Geert Verbeke & Joke Duyck, 2021. "Latent Ornstein‐Uhlenbeck models for Bayesian analysis of multivariate longitudinal categorical responses," Biometrics, The International Biometric Society, vol. 77(2), pages 689-701, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:255:y:2013:i:c:p:29-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.