IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i19p2536-2542.html
   My bibliography  Save this article

Reduction of CO2 emission by optimally tracking a pre-defined target

Author

Listed:
  • Caetano, Marco Antonio Leonel
  • Gherardi, Douglas Francisco Marcolino
  • Ribeiro, Gustavo de Paula
  • Yoneyama, Takashi

Abstract

The recent global financial crisis has highlighted the need for balanced and efficient investments in the reduction of the greenhouse effect caused by emissions of CO2 on a global scale. In a previous paper, the authors proposed a mathematical model describing the dynamic relation of CO2 emission with investment in reforestation and clean technology. An efficient allocation of resources to reduce the greenhouse effect has also been proposed. Here, this model is used to provide estimates of the investments needed in land reforestation and in the adoption of clean technologies for an optimum emission and abatement of CO2, for the period of 1996–2014. The required investments are computed to minimize deviations with respect to the emission targets proposed in the Kyoto Protocol for European Countries. The emission target can be achieved by 2014 with investments in reforestation peaking in 2004, and a reduction of the expected GDP of 42%, relative to 2006. Investments in clean technology should increase between 2008 and 2010 with maximum transfer figures around 70 million American dollars. Total (cumulative) costs are, however, relatively high depending on the price of carbon abatement and the rate at which the expected CO2 concentration in the atmosphere should be reduced. Results highlight the advantages for policy makers to be able to manage investments in climate policy more efficiently, controlling optimum transfers based on a portfolio of actions that tracks a pre-defined CO2 concentration target.

Suggested Citation

  • Caetano, Marco Antonio Leonel & Gherardi, Douglas Francisco Marcolino & Ribeiro, Gustavo de Paula & Yoneyama, Takashi, 2009. "Reduction of CO2 emission by optimally tracking a pre-defined target," Ecological Modelling, Elsevier, vol. 220(19), pages 2536-2542.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:19:p:2536-2542
    DOI: 10.1016/j.ecolmodel.2009.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009004050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    2. Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
    3. Frank Jotzo & John Pezzey, 2007. "Optimal intensity targets for greenhouse gas emissions trading under uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(2), pages 259-284, October.
    4. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    5. William D. Nordhaus, 1993. "Reflections on the Economics of Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 7(4), pages 11-25, Fall.
    6. William D. Nordhaus, 2006. "The "Stern Review" on the Economics of Climate Change," NBER Working Papers 12741, National Bureau of Economic Research, Inc.
    7. Azar, Christian & Schneider, Stephen H., 2002. "Are the economic costs of stabilising the atmosphere prohibitive?," Ecological Economics, Elsevier, vol. 42(1-2), pages 73-80, August.
    8. Tol, Richard S. J., 2001. "Equitable cost-benefit analysis of climate change policies," Ecological Economics, Elsevier, vol. 36(1), pages 71-85, January.
    9. Nordhaus, William D, 1991. "A Sketch of the Economics of the Greenhouse Effect," American Economic Review, American Economic Association, vol. 81(2), pages 146-150, May.
    10. Janssen, Marco A., 1997. "Optimization of a non-linear dynamical system for global climate change," European Journal of Operational Research, Elsevier, vol. 99(2), pages 322-335, June.
    11. Caetano, Marco Antonio Leonel & Gherardi, Douglas Francisco Marcolino & Yoneyama, Takashi, 2008. "Optimal resource management control for CO2 emission and reduction of the greenhouse effect," Ecological Modelling, Elsevier, vol. 213(1), pages 119-126.
    12. Viguier, Laurent L. & Babiker, Mustafa H. & Reilly, John M., 2003. "The costs of the Kyoto Protocol in the European Union," Energy Policy, Elsevier, vol. 31(5), pages 459-481, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caetano, Marco Antonio Leonel & Gherardi, Douglas Francisco Marcolino & Yoneyama, Takashi, 2013. "A constraint satisfaction method applied to the problem of controlling the CO2 emission in the Legal Brazilian Amazon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5322-5329.
    2. Caetano, Marco Antonio Leonel & Gherardi, Douglas Francisco Marcolino & Yoneyama, Takashi, 2011. "An optimized policy for the reduction of CO2 emission in the Brazilian Legal Amazon," Ecological Modelling, Elsevier, vol. 222(15), pages 2835-2840.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caetano, Marco Antonio Leonel & Gherardi, Douglas Francisco Marcolino & Yoneyama, Takashi, 2011. "An optimized policy for the reduction of CO2 emission in the Brazilian Legal Amazon," Ecological Modelling, Elsevier, vol. 222(15), pages 2835-2840.
    2. Caetano, Marco Antonio Leonel & Gherardi, Douglas Francisco Marcolino & Yoneyama, Takashi, 2013. "A constraint satisfaction method applied to the problem of controlling the CO2 emission in the Legal Brazilian Amazon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5322-5329.
    3. Makropoulou, Vasiliki & Dotsis, George & Markellos, Raphael N., 2013. "Environmental policy implications of extreme variations in pollutant stock levels and socioeconomic costs," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(4), pages 417-428.
    4. Robert Shum, 2014. "China, the United States, bargaining, and climate change," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 14(1), pages 83-100, March.
    5. Caetano, Marco Antonio Leonel & Gherardi, Douglas Francisco Marcolino & Yoneyama, Takashi, 2008. "Optimal resource management control for CO2 emission and reduction of the greenhouse effect," Ecological Modelling, Elsevier, vol. 213(1), pages 119-126.
    6. Paul Baer & Clive L Spash, 2008. "Cost-Benefit Analysis of Climate Change: Stern Revisited," Socio-Economics and the Environment in Discussion (SEED) Working Paper Series 2008-07, CSIRO Sustainable Ecosystems.
    7. Baranzini, Andrea & Chesney, Marc & Morisset, Jacques, 2003. "The impact of possible climate catastrophes on global warming policy," Energy Policy, Elsevier, vol. 31(8), pages 691-701, June.
    8. Brown, Stephen P.A. & Huntington, Hillard G., 2015. "Evaluating U.S. oil security and import reliance," Energy Policy, Elsevier, vol. 79(C), pages 9-22.
    9. Fankhauser, Samuel & Kverndokk, Snorre, 1996. "The global warming game -- Simulations of a CO2-reduction agreement," Resource and Energy Economics, Elsevier, vol. 18(1), pages 83-102, March.
    10. Yohe, Gary W. & Tol, Richard S. J. & Anthoff, David, 2009. "Discounting for Climate Change," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-22.
    11. Tol, Richard S.J., 2006. "The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of Fund," Climate Change Modelling and Policy Working Papers 12058, Fondazione Eni Enrico Mattei (FEEM).
    12. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    13. Pittel, Karen & Rübbelke, Dirk T.G., 2008. "Climate policy and ancillary benefits: A survey and integration into the modelling of international negotiations on climate change," Ecological Economics, Elsevier, vol. 68(1-2), pages 210-220, December.
    14. Robinson, James A. & Srinivasan, T.N., 1993. "Long-term consequences of population growth: Technological change, natural resources, and the environment," Handbook of Population and Family Economics, in: M. R. Rosenzweig & Stark, O. (ed.), Handbook of Population and Family Economics, edition 1, volume 1, chapter 21, pages 1175-1298, Elsevier.
    15. van den Bijgaart, Inge & Gerlagh, Reyer & Liski, Matti, 2016. "A simple formula for the social cost of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 75-94.
    16. Richard S.J. Tol, 2008. "Why Worry About Climate Change? A Research Agenda," Environmental Values, White Horse Press, vol. 17(4), pages 437-470, November.
    17. repec:sae:envval:ev17:ev1724 is not listed on IDEAS
    18. Richard S. J. Tol, 2021. "Selfish Bureaucrats And Policy Heterogeneity In Nordhaus’ Dice," World Scientific Book Chapters, in: Robert Mendelsohn (ed.), CLIMATE CHANGE ECONOMICS Commemoration of Nobel Prize for William Nordhaus, chapter 6, pages 77-92, World Scientific Publishing Co. Pte. Ltd..
    19. Tol, Richard S. J., 2008. "The Social Cost of Carbon: Trends, Outliers and Catastrophes," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 2, pages 1-22.
    20. Yashar Tarverdi, 2018. "Aspects of Governance and $$\hbox {CO}_2$$ CO 2 Emissions: A Non-linear Panel Data Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(1), pages 167-194, January.
    21. Wang, Mingxi & Wang, Mingrong & Wang, Shouyang, 2012. "Optimal investment and uncertainty on China's carbon emission abatement," Energy Policy, Elsevier, vol. 41(C), pages 871-877.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:19:p:2536-2542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.