Advanced Search
MyIDEAS: Login

Estimating most productive scale size with stochastic data in data envelopment analysis

Contents:

Author Info

  • Khodabakhshi, M.
Registered author(s):

    Abstract

    This article estimates most productive scale size in stochastic data envelopment analysis (DEA). Jahanshahloo and Khodabakhshi [Jahanshahloo, G.R. and Khodabakhshi, M., Using input-output orientation model for determining most productive scale size in DEA. Applied Mathematics and Computation 2003, 146(2-3), 849-855.] studied most productive scale size in classic data envelopment analysis. The classic data envelopment analysis requires that the values for all inputs and outputs be known exactly. However, this assumption may not be true, because data in many real applications cannot be precisely measured. One of the important methods to deal with imprecise data is considering stochastic data in DEA. Therefore, this research studies most productive scale size with considering stochastic data in DEA. To that end, input-output orientation model introduced in Jahanshahloo and Khodabakhshi [Jahanshahloo, G.R. and Khodabakhshi, M., Using input-output orientation model for determining most productive scale size in DEA. Applied Mathematics and Computation 2003, 146(2-3), 849-855.] is extended in stochastic data envelopment analysis. To solve the stochastic model, a deterministic equivalent is obtained. Although the deterministic equivalent is non-linear, it can be converted to a quadratic program. Furthermore, data of software companies is used to apply the proposed approach. Performance of software companies are evaluated based on their scale sizes in classic and stochastic data envelopment analysis.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6VB1-4VYMP5B-1/2/1820ed2e79cc2de67e64d15a2b78265c
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Economic Modelling.

    Volume (Year): 26 (2009)
    Issue (Month): 5 (September)
    Pages: 968-973

    as in new window
    Handle: RePEc:eee:ecmode:v:26:y:2009:i:5:p:968-973

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/inca/30411

    Related research

    Keywords: Stochastic data Most productive scale size (mpss) Chance constraints Software Companies;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    2. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    3. Li, Susan X., 1998. "Stochastic models and variable returns to scales in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 104(3), pages 532-548, February.
    4. Huang, Zhimin & Li, Susan X., 1996. "Dominance stochastic models in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 95(2), pages 390-403, December.
    5. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    6. Cooper, William W. & Deng, H. & Huang, Zhimin & Li, Susan X., 2004. "Chance constrained programming approaches to congestion in stochastic data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 155(2), pages 487-501, June.
    7. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Wang, Ying-Ming & Lan, Yi-Xin, 2013. "Estimating most productive scale size with double frontiers data envelopment analysis," Economic Modelling, Elsevier, vol. 33(C), pages 182-186.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:26:y:2009:i:5:p:968-973. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.