IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v82y2015icp89-109.html
   My bibliography  Save this article

Ridge-based method for finding curvilinear structures from noisy data

Author

Listed:
  • Pulkkinen, Seppo

Abstract

Extraction of curvilinear structures from noisy data is an essential task in many application fields such as data analysis, pattern recognition and machine vision. The proposed approach assumes a random process in which the samples are obtained from a generative model. The model specifies a set of generating functions describing curvilinear structures as well as sampling noise and background clutter. It is shown that ridge curves of the marginal density induced by the model can be used to estimate the generating functions. Given a Gaussian kernel density estimate for the marginal density, ridge curves of the density estimate are parametrized as the solution to a differential equation. Finally, a predictor–corrector algorithm for tracing the ridge curve set of such a density estimate is developed. Efficiency and robustness of the algorithm are demonstrated by numerical experiments on synthetic datasets as well as observational datasets from seismology and cosmology.

Suggested Citation

  • Pulkkinen, Seppo, 2015. "Ridge-based method for finding curvilinear structures from noisy data," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 89-109.
  • Handle: RePEc:eee:csdana:v:82:y:2015:i:c:p:89-109
    DOI: 10.1016/j.csda.2014.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314002394
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delicado, Pedro, 2001. "Another Look at Principal Curves and Surfaces," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 84-116, April.
    2. J. Chacón & T. Duong, 2010. "Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 375-398, August.
    3. Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2012. "The Geometry of Nonparametric Filament Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 788-799, June.
    4. Seppo Pulkkinen & Marko Mäkelä & Napsu Karmitsa, 2013. "A continuation approach to mode-finding of multivariate Gaussian mixtures and kernel density estimates," Journal of Global Optimization, Springer, vol. 56(2), pages 459-487, June.
    5. Jang, Woncheol, 2006. "Nonparametric density estimation and clustering in astronomical sky surveys," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 760-774, February.
    6. Seppo Pulkkinen & Marko Mäkelä & Napsu Karmitsa, 2014. "A generative model and a generalized trust region Newton method for noise reduction," Computational Optimization and Applications, Springer, vol. 57(1), pages 129-165, January.
    7. Tarn Duong & Martin L. Hazelton, 2005. "Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 485-506, September.
    8. Su, J. & Srivastava, A. & Huffer, F.W., 2013. "Detection, classification and estimation of individual shapes in 2D and 3D point clouds," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 227-241.
    9. Pedro Delicado & Mario Huerta, 2003. "Principal Curves of Oriented Points: theoretical and computational improvements," Computational Statistics, Springer, vol. 18(2), pages 293-315, July.
    10. Duong, Tarn, 2007. "ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i07).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    2. Karim M Abadir & Michel Lubrano, 2023. "Explicit solutions for the asymptotically-optimal bandwidth in cross validation," AMSE Working Papers 2336, Aix-Marseille School of Economics, France.
    3. Horová, Ivana & Koláček, Jan & Vopatová, Kamila, 2013. "Full bandwidth matrix selectors for gradient kernel density estimate," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 364-376.
    4. Schoch, Tobias & Staub, Kaspar & Pfister, Christian, 2012. "Social inequality and the biological standard of living: An anthropometric analysis of Swiss conscription data, 1875–1950," Economics & Human Biology, Elsevier, vol. 10(2), pages 154-173.
    5. Senga Kiessé, Tristan & Corson, Michael S. & Eugène, Maguy, 2022. "The potential of kernel density estimation for modelling relations among dairy farm characteristics," Agricultural Systems, Elsevier, vol. 199(C).
    6. Tiee-Jian Wu & Chih-Yuan Hsu & Huang-Yu Chen & Hui-Chun Yu, 2014. "Root $$n$$ n estimates of vectors of integrated density partial derivative functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 865-895, October.
    7. Giovanna Menardi, 2016. "A Review on Modal Clustering," International Statistical Review, International Statistical Institute, vol. 84(3), pages 413-433, December.
    8. Gramacki, Artur & Gramacki, Jarosław, 2017. "FFT-based fast bandwidth selector for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 27-45.
    9. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    10. Billings, Stephen B. & Johnson, Erik B., 2012. "A non-parametric test for industrial specialization," Journal of Urban Economics, Elsevier, vol. 71(3), pages 312-331.
    11. Boris Branisa & Adriana Cardozo, 2009. "Regional Growth Convergence in Colombia Using Social Indicators," Ibero America Institute for Econ. Research (IAI) Discussion Papers 195, Ibero-America Institute for Economic Research.
    12. Ge, Suqin & Macieira, João, 2020. "Unobserved Worker Quality and Inter-Industry Wage Differentials," GLO Discussion Paper Series 491, Global Labor Organization (GLO).
    13. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    14. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    15. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    16. R. C. Rodríguez-Caro & E. Graciá & S. P. Blomberg & H. Cayuela & M. Grace & C. P. Carmona & H. A. Pérez-Mendoza & A. Giménez & R. Salguero-Gómez, 2023. "Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    18. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    19. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
    20. Alexey Miroshnikov & Evgeny Savelev, 2019. "Asymptotic properties of parallel Bayesian kernel density estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 771-810, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:82:y:2015:i:c:p:89-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.