Advanced Search
MyIDEAS: Login to save this article or follow this journal

Detection, classification and estimation of individual shapes in 2D and 3D point clouds

Contents:

Author Info

  • Su, J.
  • Srivastava, A.
  • Huffer, F.W.
Registered author(s):

    Abstract

    The problems of detecting, classifying, and estimating shapes in point cloud data are important due to their general applicability in image analysis, computer vision, and graphics. They are challenging because the data is typically noisy, cluttered, and unordered. We study these problems using a fully statistical model where the data is modeled using a Poisson process on the object’s boundary (curves or surfaces), corrupted by additive noise and a clutter process. Using likelihood functions dictated by the model, we develop a generalized likelihood ratio test for detecting a shape in a point cloud. This ratio test is based on optimizing over some unknown parameters, including the pose and scale associated with hypothesized objects, and an empirical evaluation of the log-likelihood ratio distribution. Additionally, we develop a procedure for estimating most likely shapes in observed point clouds under given shape hypotheses. We demonstrate this framework using examples of 2D and 3D shape detection and estimation in both real and simulated data, and a usage of this framework in shape retrieval from a 3D shape database.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003374
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 58 (2013)
    Issue (Month): C ()
    Pages: 227-241

    as in new window
    Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:227-241

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords: Statistical shape detection; Shape estimation; Point cloud; Poisson process;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:227-241. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.