IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v61y2013icp50-66.html
   My bibliography  Save this article

Generative models for functional data using phase and amplitude separation

Author

Listed:
  • Tucker, J. Derek
  • Wu, Wei
  • Srivastava, Anuj

Abstract

Constructing generative models for functional observations is an important task in statistical functional analysis. In general, functional data contains both phase (or x or horizontal) and amplitude (or y or vertical) variability. Traditional methods often ignore the phase variability and focus solely on the amplitude variation, using cross-sectional techniques such as fPCA for dimensional reduction and data modeling. Ignoring phase variability leads to a loss of structure in the data and inefficiency in data models. This paper presents an approach that relies on separating the phase (x-axis) and amplitude (y-axis), then modeling these components using joint distributions. This separation, in turn, is performed using a technique called elastic shape analysis of curves that involves a new mathematical representation of functional data. Then, using individual fPCAs, one each for phase and amplitude components, it imposes joint probability models on principal coefficients of these components while respecting the nonlinear geometry of the phase representation space. These ideas are demonstrated using random sampling, for models estimated from simulated and real datasets, and show their superiority over models that ignore phase-amplitude separation. Furthermore, the generative models are applied to classification of functional data and achieve high performance in applications involving SONAR signals of underwater objects, handwritten signatures, and periodic body movements recorded by smart phones.

Suggested Citation

  • Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
  • Handle: RePEc:eee:csdana:v:61:y:2013:i:c:p:50-66
    DOI: 10.1016/j.csda.2012.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312004227
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rong Tang & Hans-Georg Müller, 2008. "Pairwise curve synchronization for functional data," Biometrika, Biometrika Trust, vol. 95(4), pages 875-889.
    2. Kneip, Alois & Ramsay, James O, 2008. "Combining Registration and Fitting for Functional Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1155-1165.
    3. Sungkyu Jung & Ian L. Dryden & J. S. Marron, 2012. "Analysis of principal nested spheres," Biometrika, Biometrika Trust, vol. 99(3), pages 551-568.
    4. Xueli Liu & Hans-Georg Muller, 2004. "Functional Convex Averaging and Synchronization for Time-Warped Random Curves," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 687-699, January.
    5. Sebastian Kurtek & Anuj Srivastava & Eric Klassen & Zhaohua Ding, 2012. "Statistical Modeling of Curves Using Shapes and Related Features," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1152-1165, September.
    6. Daniel Gervini & Theo Gasser, 2004. "Self‐modelling warping functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 959-971, November.
    7. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiyi Xie & Sebastian Kurtek & Karthik Bharath & Ying Sun, 2017. "A Geometric Approach to Visualization of Variability in Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 979-993, July.
    2. Jason Cleveland & Wei Wu & Anuj Srivastava, 2016. "Norm-preserving constraint in the Fisher--Rao registration and its application in signal estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 338-359, June.
    3. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    4. J. Derek Tucker & Drew Yarger, 2024. "Elastic functional changepoint detection of climate impacts from localized sources," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    5. Yawen Guan & Christian Sampson & J. Derek Tucker & Won Chang & Anirban Mondal & Murali Haran & Deborah Sulsky, 2019. "Computer Model Calibration Based on Image Warping Metrics: An Application for Sea Ice Deformation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 444-463, September.
    6. Jihui Lee & Gen Li & William F. Christensen & Gavin Collins & Matthew Seeley & Anton E. Bowden & David T. Fullwood & Jeff Goldsmith, 2019. "Functional Data Analyses of Gait Data Measured Using In-Shoe Sensors," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 288-313, July.
    7. Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    8. Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    9. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    10. Archimbaud, Aurore & Boulfani, Fériel & Gendre, Xavier & Nordhausen, Klaus & Ruiz-Gazen, Anne & Virta, Joni, 2021. "ICS for multivariate functional anomaly detection with applications to predictive maintenance and quality control," TSE Working Papers 21-1182, Toulouse School of Economics (TSE), revised Mar 2022.
    11. Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.
    12. Pini, Alessia & Spreafico, Lorenzo & Vantini, Simone & Vietti, Alessandro, 2019. "Multi-aspect local inference for functional data: Analysis of ultrasound tongue profiles," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 162-185.
    13. Ahn, Kyungmin & Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2020. "Regression models using shapes of functions as predictors," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    14. Lars Lau Raket & Britta Grimme & Gregor Schöner & Christian Igel & Bo Markussen, 2016. "Separating Timing, Movement Conditions and Individual Differences in the Analysis of Human Movement," PLOS Computational Biology, Public Library of Science, vol. 12(9), pages 1-27, September.
    15. Derek Tucker, J. & Shand, Lyndsay & Chowdhary, Kenny, 2021. "Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    2. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.
    3. Jason Cleveland & Wei Wu & Anuj Srivastava, 2016. "Norm-preserving constraint in the Fisher--Rao registration and its application in signal estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 338-359, June.
    4. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    5. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.
    6. Dimeglio, Chloé & Gallón, Santiago & Loubes, Jean-Michel & Maza, Elie, 2014. "A robust algorithm for template curve estimation based on manifold embedding," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 373-386.
    7. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    8. Gerda Claeskens & Bernard W. Silverman & Leen Slaets, 2010. "A multiresolution approach to time warping achieved by a Bayesian prior–posterior transfer fitting strategy," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 673-694, November.
    9. Simone Vantini, 2012. "On the definition of phase and amplitude variability in functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 676-696, December.
    10. Albarrán Lozano, Irene & Alonso González, Pablo & Arribas Gil, Ana, 2013. "Dependency evolution in Spanish disabled population : a functional data analysis approach," DES - Working Papers. Statistics and Econometrics. WS ws130403, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Niels Lundtorp Olsen & Bo Markussen & Lars Lau Raket, 2018. "Simultaneous inference for misaligned multivariate functional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1147-1176, November.
    12. Irene Albarrán-Lozano & Pablo J. Alonso-González & Ana Arribas-Gil, 2017. "Dependence evolution in the Spanish disabled population: a functional data analysis approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 657-677, February.
    13. Wagner, Heiko & Kneip, Alois, 2019. "Nonparametric registration to low-dimensional function spaces," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 49-63.
    14. Marco Grasso & Bianca Maria Colosimo & Fugee Tsung, 2017. "A phase I multi-modelling approach for profile monitoring of signal data," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4354-4377, August.
    15. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    16. Derek Tucker, J. & Shand, Lyndsay & Chowdhary, Kenny, 2021. "Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    17. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    18. Weiyi Xie & Sebastian Kurtek & Karthik Bharath & Ying Sun, 2017. "A Geometric Approach to Visualization of Variability in Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 979-993, July.
    19. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    20. Liu, Xueli & Yang, Mark C.K., 2009. "Simultaneous curve registration and clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1361-1376, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:61:y:2013:i:c:p:50-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.