IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v21y2022icp159-178.html
   My bibliography  Save this article

Modeling Probability Density Functions as Data Objects

Author

Listed:
  • Petersen, Alexander
  • Zhang, Chao
  • Kokoszka, Piotr

Abstract

Recent developments in the probabilistic and statistical analysis of probability density functions are reviewed. Density functions are treated as data objects for which suitable notions of the center of distribution and variability are discussed. Special attention is given to nonlinear methods that respect the constraints density functions must obey. Regression, time series and spatial models are discussed. The exposition is illustrated with data examples. A supplementary vignette contains expanded versions of data analyses with accompanying codes.

Suggested Citation

  • Petersen, Alexander & Zhang, Chao & Kokoszka, Piotr, 2022. "Modeling Probability Density Functions as Data Objects," Econometrics and Statistics, Elsevier, vol. 21(C), pages 159-178.
  • Handle: RePEc:eee:ecosta:v:21:y:2022:i:c:p:159-178
    DOI: 10.1016/j.ecosta.2021.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S245230622100054X
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2021.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seo, Won-Ki & Beare, Brendan K., 2019. "Cointegrated linear processes in Bayes Hilbert space," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 90-95.
    2. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    3. Talská, R. & Menafoglio, A. & Machalová, J. & Hron, K. & Fišerová, E., 2018. "Compositional regression with functional response," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 66-85.
    4. Alexander Petersen & Hans-Georg Müller, 2019. "Wasserstein covariance for multiple random densities," Biometrika, Biometrika Trust, vol. 106(2), pages 339-351.
    5. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    6. Franklin Satterthwaite, 1941. "Synthesis of variance," Psychometrika, Springer;The Psychometric Society, vol. 6(5), pages 309-316, October.
    7. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
    8. Kokoszka, Piotr & Miao, Hong & Petersen, Alexander & Shang, Han Lin, 2019. "Forecasting of density functions with an application to cross-sectional and intraday returns," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1304-1317.
    9. Elsa Cazelles & Vivien Seguy & Jérémie Bigot & Marco Cuturi & Nicolas Papadakis, 2017. "Log-PCA versus Geodesic PCA of histograms in the Wasserstein space," Working Papers 2017-85, Center for Research in Economics and Statistics.
    10. Chang, Yoosoon & Kim, Chang Sik & Park, Joon Y., 2016. "Nonstationarity in time series of state densities," Journal of Econometrics, Elsevier, vol. 192(1), pages 152-167.
    11. Delicado, P., 2011. "Dimensionality reduction when data are density functions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 401-420, January.
    12. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    13. Horta, Eduardo & Ziegelmann, Flavio, 2018. "Dynamics of financial returns densities: A functional approach applied to the Bovespa intraday index," International Journal of Forecasting, Elsevier, vol. 34(1), pages 75-88.
    14. Kyunghee Han & Hans-Georg Müller & Byeong U. Park, 2020. "Additive Functional Regression for Densities as Responses," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 997-1010, April.
    15. Nerini, David & Ghattas, Badih, 2007. "Classifying densities using functional regression trees: Applications in oceanology," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4984-4993, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Genest, Christian & Hron, Karel & Nešlehová, Johanna G., 2023. "Orthogonal decomposition of multivariate densities in Bayes spaces and relation with their copula-based representation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    2. Yabu, Takuya, 2023. "On Discrete Probability Distributions to Grasp the Number of Samples in a Population," OSF Preprints yv24f, Center for Open Science.
    3. Ghodrati, Laya & Panaretos, Victor M., 2023. "Minimax rate for optimal transport regression between distributions," Statistics & Probability Letters, Elsevier, vol. 194(C).
    4. Thomas-Agnan, Christine & Simioni, Michel & Trinh, Thi-Huong, 2023. "Discrete and Smooth Scalar-on-Density Compositional Regression for Assessing the Impact of Climate Change on Rice Yield in Vietnam," TSE Working Papers 23-1410, Toulouse School of Economics (TSE), revised Apr 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
    2. Karel Hron & Jitka Machalová & Alessandra Menafoglio, 2023. "Bivariate densities in Bayes spaces: orthogonal decomposition and spline representation," Statistical Papers, Springer, vol. 64(5), pages 1629-1667, October.
    3. Chao Zhang & Piotr Kokoszka & Alexander Petersen, 2022. "Wasserstein autoregressive models for density time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 30-52, January.
    4. Bongiorno, Enea G. & Goia, Aldo, 2019. "Describing the concentration of income populations by functional principal component analysis on Lorenz curves," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 10-24.
    5. Kokoszka, Piotr & Miao, Hong & Petersen, Alexander & Shang, Han Lin, 2019. "Forecasting of density functions with an application to cross-sectional and intraday returns," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1304-1317.
    6. Genest, Christian & Hron, Karel & Nešlehová, Johanna G., 2023. "Orthogonal decomposition of multivariate densities in Bayes spaces and relation with their copula-based representation," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    7. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    8. Jitka Machalová & Renáta Talská & Karel Hron & Aleš Gába, 2021. "Compositional splines for representation of density functions," Computational Statistics, Springer, vol. 36(2), pages 1031-1064, June.
    9. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
    10. ARATA Yoshiyuki, 2017. "A Functional Linear Regression Model in the Space of Probability Density Functions," Discussion papers 17015, Research Institute of Economy, Trade and Industry (RIETI).
    11. Seo, Won-Ki & Beare, Brendan K., 2019. "Cointegrated linear processes in Bayes Hilbert space," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 90-95.
    12. Zhang, Zhen & Müller, Hans-Georg, 2011. "Functional density synchronization," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2234-2249, July.
    13. Beare, Brendan K. & Seo, Won-Ki, 2020. "Representation Of I(1) And I(2) Autoregressive Hilbertian Processes," Econometric Theory, Cambridge University Press, vol. 36(5), pages 773-802, October.
    14. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2019. "Parametric Inference on the Mean of Functional Data Applied to Lifetime Income Curves," Working papers 2019rwp-153, Yonsei University, Yonsei Economics Research Institute.
    15. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2022. "Parametric Conditional Mean Inference With Functional Data Applied To Lifetime Income Curves," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 391-456, February.
    16. Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
    17. Maria Ruiz-Medina & Rosa Espejo & Elvira Romano, 2014. "Spatial functional normal mixed effect approach for curve classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 257-285, September.
    18. Hsin‐wen Chang & Ian W. McKeague, 2022. "Empirical likelihood‐based inference for functional means with application to wearable device data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1947-1968, November.
    19. Talská, R. & Menafoglio, A. & Machalová, J. & Hron, K. & Fišerová, E., 2018. "Compositional regression with functional response," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 66-85.
    20. Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:21:y:2022:i:c:p:159-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.