Advanced Search
MyIDEAS: Login to save this article or follow this journal

Statistical Modeling of Curves Using Shapes and Related Features

Contents:

Author Info

  • Sebastian Kurtek
  • Anuj Srivastava
  • Eric Klassen
  • Zhaohua Ding
Registered author(s):

    Abstract

    Motivated by the problems of analyzing protein backbones, diffusion tensor magnetic resonance imaging (DT-MRI) fiber tracts in the human brain, and other problems involving curves, in this study we present some statistical models of parameterized curves, in , in terms of combinations of features such as shape, location, scale, and orientation. For each combination of interest, we identify a representation manifold, endow it with a Riemannian metric, and outline tools for computing sample statistics on these manifolds. An important characteristic of the chosen representations is that the ensuing comparison and modeling of curves is invariant to how the curves are parameterized. The nuisance variables, including parameterization, are removed by forming quotient spaces under appropriate group actions. In the case of shape analysis, the resulting spaces are quotient spaces of Hilbert spheres, and we derive certain wrapped truncated normal densities for capturing variability in observed curves. We demonstrate these models using both artificial data and real data involving DT-MRI fiber tracts from multiple subjects and protein backbones from the Shape Retrieval Contest of Non-rigid 3D Models (SHREC) 2010 database.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://hdl.handle.net/10.1080/01621459.2012.699770
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 499 (September)
    Pages: 1152-1165

    as in new window
    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1152-1165

    Contact details of provider:
    Web page: http://www.tandfonline.com/UASA20

    Order Information:
    Web: http://www.tandfonline.com/pricing/journal/UASA20

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:499:p:1152-1165. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.