IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i5p1219-1233.html
   My bibliography  Save this article

k-mean alignment for curve clustering

Author

Listed:
  • Sangalli, Laura M.
  • Secchi, Piercesare
  • Vantini, Simone
  • Vitelli, Valeria

Abstract

The problem of curve clustering when curves are misaligned is considered. A novel algorithm is described, which jointly clusters and aligns curves. The proposed procedure efficiently decouples amplitude and phase variability; in particular, it is able to detect amplitude clusters while simultaneously disclosing clustering structures in the phase, pointing out features that can neither be captured by simple curve clustering nor by simple curve alignment. The procedure is illustrated via simulation studies and applications to real data.

Suggested Citation

  • Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Vitelli, Valeria, 2010. "k-mean alignment for curve clustering," Computational Statistics & Data Analysis, Elsevier, vol. 54(5), pages 1219-1233, May.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:5:p:1219-1233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00460-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.
    2. Laura M. Sangalli & Piercesare Secchi & Simone Vantini & Alessandro Veneziani, 2009. "Efficient estimation of three‐dimensional curves and their derivatives by free‐knot regression splines, applied to the analysis of inner carotid artery centrelines," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 285-306, July.
    3. Daniel Gervini & Theo Gasser, 2004. "Self‐modelling warping functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 959-971, November.
    4. Cuesta-Albertos, Juan Antonio & Fraiman, Ricardo, 2007. "Impartial trimmed k-means for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4864-4877, June.
    5. Sangalli, Laura M. & Secchi, Piercesare & Vantini, Simone & Veneziani, Alessandro, 2009. "A Case Study in Exploratory Functional Data Analysis: Geometrical Features of the Internal Carotid Artery," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 37-48.
    6. Telesca, Donatello & Inoue, Lurdes Y.T., 2008. "Bayesian Hierarchical Curve Registration," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 328-339, March.
    7. Liu, Xueli & Yang, Mark C.K., 2009. "Simultaneous curve registration and clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1361-1376, February.
    8. Kaziska, David & Srivastava, Anuj, 2007. "Gait-Based Human Recognition by Classification of Cyclostationary Processes on Nonlinear Shape Manifolds," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1114-1124, December.
    9. Ke C. & Wang Y., 2001. "Semiparametric Nonlinear Mixed-Effects Models and Their Applications," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1272-1298, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmela Iorio & Gianluca Frasso & Antonio D’Ambrosio & Roberta Siciliano, 2023. "Boosted-oriented probabilistic smoothing-spline clustering of series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1123-1140, October.
    2. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2014. "Functional k-means inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 172-182.
    3. Tucker, J. Derek & Wu, Wei & Srivastava, Anuj, 2013. "Generative models for functional data using phase and amplitude separation," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 50-66.
    4. Snježana Majstorović & Kristian Sabo & Johannes Jung & Matija Klarić, 2018. "Spectral methods for growth curve clustering," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 715-737, September.
    5. Piercesare Secchi & Simone Vantini & Valeria Vitelli, 2015. "Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 279-300, July.
    6. Javier Albert-Smet & Aurora Torrente & Juan Romo, 2023. "Band depth based initialization of K-means for functional data clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 463-484, June.
    7. Wu, Zizhen & Hitchcock, David B., 2016. "A Bayesian method for simultaneous registration and clustering of functional observations," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 121-136.
    8. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    9. Lili Wang & Qiulin Xiong & Gaofeng Wu & Atul Gautam & Jianfang Jiang & Shuang Liu & Wenji Zhao & Hongliang Guan, 2019. "Spatio-Temporal Variation Characteristics of PM 2.5 in the Beijing–Tianjin–Hebei Region, China, from 2013 to 2018," IJERPH, MDPI, vol. 16(21), pages 1-20, November.
    10. Simone Vantini, 2012. "On the definition of phase and amplitude variability in functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 676-696, December.
    11. Mantas Svazas & Valentinas Navickas & Yuriy Bilan & Joanna Nakonieczny & Jana Spankova, 2021. "Biomass Clusterization from a Regional Perspective: The Case of Lithuania," Energies, MDPI, vol. 14(21), pages 1-15, October.
    12. Marco Grasso & Bianca Maria Colosimo & Fugee Tsung, 2017. "A phase I multi-modelling approach for profile monitoring of signal data," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4354-4377, August.
    13. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    14. Huaihou Chen & Donglin Zeng, 2014. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1350-1353, December.
    15. Pedro C. Álvarez-Esteban & Luis A. García-Escudero, 2022. "Robust clustering of functional directional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 181-199, March.
    16. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    17. Galvani, Marta & Torti, Agostino & Menafoglio, Alessandra & Vantini, Simone, 2021. "FunCC: A new bi-clustering algorithm for functional data with misalignment," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    18. Floriello, Davide & Vitelli, Valeria, 2017. "Sparse clustering of functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 1-18.
    19. Andrea Martino & Andrea Ghiglietti & Francesca Ieva & Anna Maria Paganoni, 2019. "A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 301-322, June.
    20. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    21. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    22. Menafoglio, Alessandra & Petris, Giovanni, 2016. "Kriging for Hilbert-space valued random fields: The operatorial point of view," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 84-94.
    23. Wagner, Heiko & Kneip, Alois, 2019. "Nonparametric registration to low-dimensional function spaces," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 49-63.
    24. Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
    25. Dimeglio, Chloé & Gallón, Santiago & Loubes, Jean-Michel & Maza, Elie, 2014. "A robust algorithm for template curve estimation based on manifold embedding," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 373-386.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piercesare Secchi & Simone Vantini & Valeria Vitelli, 2015. "Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 279-300, July.
    2. Simone Vantini, 2012. "On the definition of phase and amplitude variability in functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 676-696, December.
    3. Maire, Florian & Moulines, Eric & Lefebvre, Sidonie, 2017. "Online EM for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 27-47.
    4. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.
    5. Andrea Martino & Andrea Ghiglietti & Francesca Ieva & Anna Maria Paganoni, 2019. "A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 301-322, June.
    6. Donatello Telesca & Lurdes Y.T. Inoue & Mauricio Neira & Ruth Etzioni & Martin Gleave & Colleen Nelson, 2009. "Differential Expression and Network Inferences through Functional Data Modeling," Biometrics, The International Biometric Society, vol. 65(3), pages 793-804, September.
    7. Boudaoud, S. & Rix, H. & Meste, O., 2010. "Core Shape modelling of a set of curves," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 308-325, February.
    8. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    9. Galvani, Marta & Torti, Agostino & Menafoglio, Alessandra & Vantini, Simone, 2021. "FunCC: A new bi-clustering algorithm for functional data with misalignment," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    10. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    11. Gerda Claeskens & Bernard W. Silverman & Leen Slaets, 2010. "A multiresolution approach to time warping achieved by a Bayesian prior–posterior transfer fitting strategy," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 673-694, November.
    12. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    13. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    14. Alonso Fernández, Andrés Modesto & Casado, David & Romo, Juan, 2009. "Classification of functional data: a weighted distance approach," DES - Working Papers. Statistics and Econometrics. WS ws093915, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Pigoli, Davide & Sangalli, Laura M., 2012. "Wavelets in functional data analysis: Estimation of multidimensional curves and their derivatives," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1482-1498.
    16. B. Ettinger & S. Perotto & L. M. Sangalli, 2016. "Spatial regression models over two-dimensional manifolds," Biometrika, Biometrika Trust, vol. 103(1), pages 71-88.
    17. Aletti, Giacomo & May, Caterina & Tommasi, Chiara, 2016. "Best estimation of functional linear models," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 54-68.
    18. Jason Cleveland & Wei Wu & Anuj Srivastava, 2016. "Norm-preserving constraint in the Fisher--Rao registration and its application in signal estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 338-359, June.
    19. Slaets, Leen & Claeskens, Gerda & Silverman, Bernard W., 2013. "Warping Functional Data in R and C via a Bayesian Multiresolution Approach," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i03).
    20. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:5:p:1219-1233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.