IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923013466.html
   My bibliography  Save this article

Light robust co-optimization of energy and reserves in the day-ahead electricity market

Author

Listed:
  • Silva-Rodriguez, Lina
  • Sanjab, Anibal
  • Fumagalli, Elena
  • Gibescu, Madeleine

Abstract

To accommodate the stochasticity of variable renewable energy sources (VRES) while efficiently dispatching generation resources and procuring adequate reserves, previous research proposed co-optimizing energy and reserves in the day-ahead (DA) using various uncertainty-based mechanisms. However, the co-optimized markets based on these mechanisms exhibit implementation limitations related to their high computational burden, complex customized solution algorithms, and over-conservative solutions. To address these shortcomings, this paper proposes a practical light robust optimization (LR) approach for the DA co-optimization of energy and reserves. The method results in a linear market clearing mechanism that easily enables the control of the robustness level of the solution through a tunable conservativeness parameter. In addition, the paper explores three different formulations for specifying the system reserve requirements considering, namely, fixed reserve requirements (LRF1), variable reserve requirements based on system uncertainty (LRF2), and a combined approach (LRF3). The formulations integrate the uncertainty from VRES in the market setting using a new bid format called uncertainty bid. The three formulations are then compared using a case study. The numerical results show the effects of the variation of the conservativeness parameter and the reserve requirements on the total socio-economic welfare (SEW), dispatched energy quantities, anticipated activation costs, and procured reserves. Moreover, the analyses showcase that sizing reserves based on system uncertainty (in LRF2) results in a 27%–61% decrease in reserve procurement costs when compared with LRF1, while the combined approach (in LRF3) results in a better performance than LRF2 in terms of reserve activation costs, with costs 61%–263% lower than in LRF2.

Suggested Citation

  • Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Gibescu, Madeleine, 2024. "Light robust co-optimization of energy and reserves in the day-ahead electricity market," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013466
    DOI: 10.1016/j.apenergy.2023.121982
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isemonger, Alan G., 2007. "Some Guidelines for Designing Markets in Reactive Power," The Electricity Journal, Elsevier, vol. 20(6), pages 35-45, July.
    2. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    3. Abunima, Hamza & Park, Woan-Ho & Glick, Mark B. & Kim, Yun-Su, 2022. "Two-Stage stochastic optimization for operating a Renewable-Based Microgrid," Applied Energy, Elsevier, vol. 325(C).
    4. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    5. Herding, Robert & Ross, Emma & Jones, Wayne R. & Charitopoulos, Vassilis M. & Papageorgiou, Lazaros G., 2023. "Stochastic programming approach for optimal day-ahead market bidding curves of a microgrid," Applied Energy, Elsevier, vol. 336(C).
    6. Sedzro, Kwami Senam A. & Kishore, Shalinee & Lamadrid, Alberto J. & Zuluaga, Luis F., 2018. "Stochastic risk-sensitive market integration for renewable energy: Application to ocean wave power plants," Applied Energy, Elsevier, vol. 229(C), pages 474-481.
    7. Fusco, Andrea & Gioffrè, Domenico & Francesco Castelli, Alessandro & Bovo, Cristian & Martelli, Emanuele, 2023. "A multi-stage stochastic programming model for the unit commitment of conventional and virtual power plants bidding in the day-ahead and ancillary services markets," Applied Energy, Elsevier, vol. 336(C).
    8. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    9. Abdin, Adam F. & Caunhye, Aakil & Zio, Enrico & Cardin, Michel-Alexandre, 2022. "Optimizing generation expansion planning with operational uncertainty: A multistage adaptive robust approach," Applied Energy, Elsevier, vol. 306(PA).
    10. Bjørndal, Endre & Bjørndal, Mette & Midthun, Kjetil & Tomasgard, Asgeir, 2018. "Stochastic electricity dispatch: A challenge for market design," Energy, Elsevier, vol. 150(C), pages 992-1005.
    11. Morales, Juan M. & Zugno, Marco & Pineda, Salvador & Pinson, Pierre, 2014. "Electricity market clearing with improved scheduling of stochastic production," European Journal of Operational Research, Elsevier, vol. 235(3), pages 765-774.
    12. Zhao, Ning & You, Fengqi, 2022. "Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Yao, Yunting & Gao, Ciwei & Lai, Kexing & Chen, Tao & Yang, Jianlin, 2021. "An incentive-compatible distributed integrated energy market mechanism design with adaptive robust approach," Applied Energy, Elsevier, vol. 282(PA).
    14. Juan M. Morales & Antonio J. Conejo & Henrik Madsen & Pierre Pinson & Marco Zugno, 2014. "Integrating Renewables in Electricity Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9411-9, December.
    15. Hugo Algarvio & Fernando Lopes & António Couto & Ana Estanqueiro, 2019. "Participation of wind power producers in day‐ahead and balancing markets: An overview and a simulation‐based study," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    16. Zakaria, A. & Ismail, Firas B. & Lipu, M.S. Hossain & Hannan, M.A., 2020. "Uncertainty models for stochastic optimization in renewable energy applications," Renewable Energy, Elsevier, vol. 145(C), pages 1543-1571.
    17. Crespo-Vazquez, Jose L. & Carrillo, C. & Diaz-Dorado, E. & Martinez-Lorenzo, Jose A. & Noor-E-Alam, Md., 2018. "A machine learning based stochastic optimization framework for a wind and storage power plant participating in energy pool market," Applied Energy, Elsevier, vol. 232(C), pages 341-357.
    18. Al-Lawati, Razan A.H. & Crespo-Vazquez, Jose L. & Faiz, Tasnim Ibn & Fang, Xin & Noor-E-Alam, Md., 2021. "Two-stage stochastic optimization frameworks to aid in decision-making under uncertainty for variable resource generators participating in a sequential energy market," Applied Energy, Elsevier, vol. 292(C).
    19. RuthDominguez & Giorgia Oggioni & Yves Smeers, 2019. "Reserve procurement and flexibility services in power systems with high renewable capacity: Effects of integration on different market designs," LIDAM Reprints CORE 3019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Tan, Jin & Wu, Qiuwei & Hu, Qinran & Wei, Wei & Liu, Feng, 2020. "Adaptive robust energy and reserve co-optimization of integrated electricity and heating system considering wind uncertainty," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina Silva-Rodriguez & Anibal Sanjab & Elena Fumagalli & Ana Virag & Madeleine Gibescu, 2020. "Short Term Electricity Market Designs: Identified Challenges and Promising Solutions," Papers 2011.04587, arXiv.org.
    2. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    3. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Virag, Ana & Gibescu, Madeleine, 2022. "Short term wholesale electricity market designs: A review of identified challenges and promising solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    5. Anna Schwele & Christos Ordoudis & Pierre Pinson & Jalal Kazempour, 2021. "Coordination of power and natural gas markets via financial instruments," Computational Management Science, Springer, vol. 18(4), pages 505-538, October.
    6. Henao, Felipe & Dyner, Isaac, 2020. "Renewables in the optimal expansion of colombian power considering the Hidroituango crisis," Renewable Energy, Elsevier, vol. 158(C), pages 612-627.
    7. Rujie Zhu & Kaushik Das & Poul Ejnar Sørensen & Anca Daniela Hansen, 2023. "Optimal Participation of Co-Located Wind–Battery Plants in Sequential Electricity Markets," Energies, MDPI, vol. 16(15), pages 1-17, July.
    8. Mei, Shufan & Tan, Qinliang & Liu, Yuan & Trivedi, Anupam & Srinivasan, Dipti, 2023. "Optimal bidding strategy for virtual power plant participating in combined electricity and ancillary services market considering dynamic demand response price and integrated consumption satisfaction," Energy, Elsevier, vol. 284(C).
    9. De Lorenzi, Andrea & Gambarotta, Agostino & Marzi, Emanuela & Morini, Mirko & Saletti, Costanza, 2022. "Predictive control of a combined heat and power plant for grid flexibility under demand uncertainty," Applied Energy, Elsevier, vol. 314(C).
    10. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Xue, Xizhen & Lin, Zhongwei & Fang, Fang, 2021. "Real-time optimal operation of integrated electricity and heat system considering reserve provision of large-scale heat pumps," Energy, Elsevier, vol. 237(C).
    11. Arrigo, Adriano & Ordoudis, Christos & Kazempour, Jalal & De Grève, Zacharie & Toubeau, Jean-François & Vallée, François, 2022. "Wasserstein distributionally robust chance-constrained optimization for energy and reserve dispatch: An exact and physically-bounded formulation," European Journal of Operational Research, Elsevier, vol. 296(1), pages 304-322.
    12. Machado, Renato Haddad Simões & Rego, Erik Eduardo & Udaeta, Miguel Edgar Morales & Nascimento, Viviane Tavares, 2022. "Estimating the adequacy revenue considering long-term reliability in a renewable power system," Energy, Elsevier, vol. 243(C).
    13. Fang, Xin & Cui, Hantao & Du, Ershun & Li, Fangxing & Kang, Chongqing, 2021. "Characteristics of locational uncertainty marginal price for correlated uncertainties of variable renewable generation and demands," Applied Energy, Elsevier, vol. 282(PA).
    14. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    15. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    16. Karaca, Orcun & Delikaraoglou, Stefanos & Hug, Gabriela & Kamgarpour, Maryam, 2022. "Enabling inter-area reserve exchange through stable benefit allocation mechanisms," Omega, Elsevier, vol. 113(C).
    17. Xiong, Houbo & Zhou, Yue & Guo, Chuangxin & Ding, Yi & Luo, Fengji, 2023. "Multi-stage risk-based assessment for wind energy accommodation capability: A robust and non-anticipative method," Applied Energy, Elsevier, vol. 350(C).
    18. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    19. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    20. Fusco, Andrea & Gioffrè, Domenico & Francesco Castelli, Alessandro & Bovo, Cristian & Martelli, Emanuele, 2023. "A multi-stage stochastic programming model for the unit commitment of conventional and virtual power plants bidding in the day-ahead and ancillary services markets," Applied Energy, Elsevier, vol. 336(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.