IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v315y2022ics030626192200383x.html
   My bibliography  Save this article

Operational guide to stabilize, standardize and increase power plant efficiency

Author

Listed:
  • Vieira, Lara Werncke
  • Marques, Augusto Delavald
  • Duarte, Jéssica
  • Zanardo, Rafael Petri
  • Schneider, Paulo Smith
  • Viana, Felipe Antonio Chegury
  • da Silva Neto, Antônio José
  • Centeno, Felipe Roman
  • Hunt, Julian David
  • Siluk, Julio Cezar Mairesse

Abstract

Complex engineering systems, such as power plants, deliver their best performance when operating along a designed range of some priority parameters. However, plant field operation may deviate from design conditions, and new references must be identified. Actions towards high-quality operation can be supported by fine modeling, which helps building decision support tools. The present work proposes a standardization strategy for the operation of an actual coal-fired power plant based on a Design of Experiment approach, partially tested onsite and finally accomplished with surrogate models built upon a 2 year long database. Artificial Neural Networks (ANNs) and Mass and Energy balances (M&Es) are used to represent the plant’s steam generator and its mills subset, which is the core of an operational guide to increase system efficiency under actual operation. Primary and secondary air flows, pulverized coal outlet temperature, speed of the dynamic classifier, primary air flow, excess O2, primary and secondary air pressures are the seven controllable factors selected as the most relevant ones among an extensive set of parameters, able to perform effective maneuvers. The application of the operational guide indicates combinations of ranges of the seven controllable parameters that allow for achieving steam generator efficiency within the 84.0% to 88.92% range. The proposed methodology aims as well to improve safe and stable conditions to a system that undergoes operation different than the one prescribed by the original design. The study case results show an opportunity to raise efficiency by up to 2.28% during operation, which represents a reduction in coal consumption by 3.1 t/h and above 6% on CO2 emissions.

Suggested Citation

  • Vieira, Lara Werncke & Marques, Augusto Delavald & Duarte, Jéssica & Zanardo, Rafael Petri & Schneider, Paulo Smith & Viana, Felipe Antonio Chegury & da Silva Neto, Antônio José & Centeno, Felipe Roma, 2022. "Operational guide to stabilize, standardize and increase power plant efficiency," Applied Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:appene:v:315:y:2022:i:c:s030626192200383x
    DOI: 10.1016/j.apenergy.2022.118973
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200383X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118973?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manente, Giovanni & Toffolo, Andrea & Lazzaretto, Andrea & Paci, Marco, 2013. "An Organic Rankine Cycle off-design model for the search of the optimal control strategy," Energy, Elsevier, vol. 58(C), pages 97-106.
    2. Keith Burnard & Sankar Bhattacharya, 2011. "Power Generation from Coal: Ongoing Developments and Outlook," IEA Energy Papers 2011/14, OECD Publishing.
    3. Li, Xiaoen & Wang, Ningling & Wang, Ligang & Yang, Yongping & Maréchal, François, 2018. "Identification of optimal operating strategy of direct air-cooling condenser for Rankine cycle based power plants," Applied Energy, Elsevier, vol. 209(C), pages 153-166.
    4. Stoppato, A. & Mirandola, A. & Meneghetti, G. & Lo Casto, E., 2012. "On the operation strategy of steam power plants working at variable load: Technical and economic issues," Energy, Elsevier, vol. 37(1), pages 228-236.
    5. Wakiru, James M. & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2019. "A simulation-based optimization approach evaluating maintenance and spare parts demand interaction effects," International Journal of Production Economics, Elsevier, vol. 208(C), pages 329-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
    2. Opriș, Ioana & Cenușă, Victor-Eduard, 2023. "Parametric and heuristic optimization of multiple schemes with double-reheat ultra-supercritical steam power plants," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrzej Rusin & Martyna Tomala & Henryk Łukowicz & Grzegorz Nowak & Wojciech Kosman, 2021. "On-Line Control of Stresses in the Power Unit Pressure Elements Taking Account of Variable Heat Transfer Conditions," Energies, MDPI, vol. 14(15), pages 1-21, August.
    2. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    3. Martyna Tomala & Andrzej Rusin, 2022. "Risk-Based Operation and Maintenance Planning of Steam Turbine with the Long In-Service Time," Energies, MDPI, vol. 15(14), pages 1-17, July.
    4. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
    5. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    6. Van Erdeweghe, Sarah & Van Bael, Johan & Laenen, Ben & D’haeseleer, William, 2019. "Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles," Applied Energy, Elsevier, vol. 242(C), pages 716-731.
    7. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    8. Ciani Bassetti, Martina & Consoli, Daniele & Manente, Giovanni & Lazzaretto, Andrea, 2018. "Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage," Renewable Energy, Elsevier, vol. 128(PB), pages 460-472.
    9. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    10. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    11. Andrea Aquino & Pietro Poesio, 2021. "Off-Design Exergy Analysis of Convective Drying Using a Two-Phase Multispecies Model," Energies, MDPI, vol. 14(1), pages 1-36, January.
    12. Gupta, Saurabh & De, Santanu, 2022. "An experimental investigation of high-ash coal gasification in a pilot-scale bubbling fluidized bed reactor," Energy, Elsevier, vol. 244(PB).
    13. Ben-Ran Fu & Sung-Wei Hsu & Yuh-Ren Lee & Jui-Ching Hsieh & Chia-Ming Chang & Chih-Hsi Liu, 2014. "Performance of a 250 kW Organic Rankine Cycle System for Off-Design Heat Source Conditions," Energies, MDPI, vol. 7(6), pages 1-11, June.
    14. Blanco, Jesús M. & Vazquez, L. & Peña, F., 2012. "Investigation on a new methodology for thermal power plant assessment through live diagnosis monitoring of selected process parameters; application to a case study," Energy, Elsevier, vol. 42(1), pages 170-180.
    15. Schifflechner, Christopher & Kuhnert, Lara & Irrgang, Ludwig & Dawo, Fabian & Kaufmann, Florian & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Geothermal trigeneration systems with Organic Rankine Cycles: Evaluation of different plant configurations considering part load behaviour," Renewable Energy, Elsevier, vol. 207(C), pages 218-233.
    16. Martyna Tomala & Andrzej Rusin & Adam Wojaczek, 2020. "Risk-Based Planning of Diagnostic Testing of Turbines Operating with Increased Flexibility," Energies, MDPI, vol. 13(13), pages 1-16, July.
    17. Fabio Fatigati & Diego Vittorini & Yaxiong Wang & Jian Song & Christos N. Markides & Roberto Cipollone, 2020. "Design and Operational Control Strategy for Optimum Off-Design Performance of an ORC Plant for Low-Grade Waste Heat Recovery," Energies, MDPI, vol. 13(21), pages 1-23, November.
    18. Osman Özkaraca & Pınar Keçebaş & Cihan Demircan & Ali Keçebaş, 2017. "Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm," Energies, MDPI, vol. 10(11), pages 1-28, October.
    19. Wakiru, James & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2021. "Integrated remanufacturing, maintenance and spares policies towards life extension of a multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Vecchi, Andrea & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Integrated techno-economic assessment of Liquid Air Energy Storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:315:y:2022:i:c:s030626192200383x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.