IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v313y2022ics0306261922002409.html
   My bibliography  Save this article

Resilient by design: Preventing wildfires and blackouts with microgrids

Author

Listed:
  • Yang, Weijia
  • Sparrow, Sarah N.
  • Ashtine, Masaō
  • Wallom, David C.H.
  • Morstyn, Thomas

Abstract

This paper proposes a strategy for managing wildfire risks and preventing blackouts using microgrids. To demonstrate this approach, not seen in previous literature, we use the power network of Victoria, Australia, in December 2019 as a case study. The Fire Weather Index (FWI) is a crucial indicator of global fire behaviour both spatially and temporally, as proved with its robust analysis within many previous studies. The FWI is applied to a Wildfire-Energy System for the first time, contributing to a higher spatial and temporal resolution to position the wildfire risk in a grid. A novel method is proposed to automatically correlate the wildfire risk index and the power network model using geographical information of the transmission lines. The optimal power flow and grid performances are obtained from a grid model which incorporates wildfire risk distributions. It is shown that a system with installed microgrids can maintain operation under severe fire-related conditions without scheduled or unplanned outages. Finally, a cost-benefit analysis is conducted, which demonstrates that 68% of system costs can be recuperated by implementing networked microgrid solutions.

Suggested Citation

  • Yang, Weijia & Sparrow, Sarah N. & Ashtine, Masaō & Wallom, David C.H. & Morstyn, Thomas, 2022. "Resilient by design: Preventing wildfires and blackouts with microgrids," Applied Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:appene:v:313:y:2022:i:c:s0306261922002409
    DOI: 10.1016/j.apenergy.2022.118793
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922002409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simshauser, P., 2021. "Rooftop Solar PV and the Peak Load Problem in the NEM’s Queensland Region," Cambridge Working Papers in Economics 2180, Faculty of Economics, University of Cambridge.
    2. Blakers, Andrew & Lu, Bin & Stocks, Matthew, 2017. "100% renewable electricity in Australia," Energy, Elsevier, vol. 133(C), pages 471-482.
    3. David J. Frame & Suzanne M. Rosier & Ilan Noy & Luke J. Harrington & Trevor Carey-Smith & Sarah N. Sparrow & Dáithí A. Stone & Samuel M. Dean, 2020. "Climate change attribution and the economic costs of extreme weather events: a study on damages from extreme rainfall and drought," Climatic Change, Springer, vol. 162(2), pages 781-797, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aili Amupolo & Sofia Nambundunga & Daniel S. P. Chowdhury & Gunnar Grün, 2022. "Techno-Economic Feasibility of Off-Grid Renewable Energy Electrification Schemes: A Case Study of an Informal Settlement in Namibia," Energies, MDPI, vol. 15(12), pages 1-32, June.
    2. Perera, A.T.D. & Zhao, Bingyu & Wang, Zhe & Soga, Kenichi & Hong, Tianzhen, 2023. "Optimal design of microgrids to improve wildfire resilience for vulnerable communities at the wildland-urban interface," Applied Energy, Elsevier, vol. 335(C).
    3. Tomin, Nikita & Shakirov, Vladislav & Kurbatsky, Victor & Muzychuk, Roman & Popova, Ekaterina & Sidorov, Denis & Kozlov, Alexandr & Yang, Dechang, 2022. "A multi-criteria approach to designing and managing a renewable energy community," Renewable Energy, Elsevier, vol. 199(C), pages 1153-1175.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas H. Douthat & Fahmida Akhter & Rachelle Sanderson & Jerrod Penn, 2023. "Stakeholder Perceptions about Incorporating Externalities and Vulnerability into Benefit–Cost Analysis Tools for Watershed Flood Risk Mitigation," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    2. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    3. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    4. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    5. Baruah, Debendra Chandra & Enweremadu, Christopher Chintua, 2019. "Prospects of decentralized renewable energy to improve energy access: A resource-inventory-based analysis of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 328-341.
    6. De Rosa, Luca & Castro, Rui, 2020. "Forecasting and assessment of the 2030 australian electricity mix paths towards energy transition," Energy, Elsevier, vol. 205(C).
    7. Paul J. Burke, 2023. "On the way out: Government revenues from fossil fuels in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(1), pages 1-17, January.
    8. Best, Rohan & Burke, Paul J., 2018. "Adoption of solar and wind energy: The roles of carbon pricing and aggregate policy support," Energy Policy, Elsevier, vol. 118(C), pages 404-417.
    9. Nzotcha, Urbain & Kenfack, Joseph & Blanche Manjia, Marceline, 2019. "Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 930-947.
    10. Kiwan, Suhil & Al-Gharibeh, Elyasa, 2020. "Jordan toward a 100% renewable electricity system," Renewable Energy, Elsevier, vol. 147(P1), pages 423-436.
    11. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    12. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    13. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    14. Zhang, Dongna & Dai, Xingyu & Wang, Qunwei & Lau, Chi Keung Marco, 2023. "Impacts of weather conditions on the US commodity markets systemic interdependence across multi-timescales," Energy Economics, Elsevier, vol. 123(C).
    15. Tian, Shan & He, Haoyang & Kendall, Alissa & Davis, Steven J. & Ogunseitan, Oladele A. & Schoenung, Julie M. & Samuelsen, Scott & Tarroja, Brian, 2021. "Environmental benefit-detriment thresholds for flow battery energy storage systems: A case study in California," Applied Energy, Elsevier, vol. 300(C).
    16. Guerin, Turlough F., 2022. "Business model scaling can be used to activate and grow the biogas-to-grid market in Australia to decarbonise hard-to-abate industries: An application of entrepreneurial management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Elisabeth A. Lloyd & Theodore G. Shepherd, 2021. "Climate change attribution and legal contexts: evidence and the role of storylines," Climatic Change, Springer, vol. 167(3), pages 1-13, August.
    18. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    19. Colbertaldo, Paolo & Guandalini, Giulio & Campanari, Stefano, 2018. "Modelling the integrated power and transport energy system: The role of power-to-gas and hydrogen in long-term scenarios for Italy," Energy, Elsevier, vol. 154(C), pages 592-601.
    20. Laimon, Mohamd & Mai, Thanh & Goh, Steven & Yusaf, Talal, 2022. "System dynamics modelling to assess the impact of renewable energy systems and energy efficiency on the performance of the energy sector," Renewable Energy, Elsevier, vol. 193(C), pages 1041-1048.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:313:y:2022:i:c:s0306261922002409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.