IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13681-d699715.html
   My bibliography  Save this article

Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile

Author

Listed:
  • Yunesky Masip Macía

    (Escuela de Ingeniería Mecánica, Quilpué, Pontificia Universidad Católica de Valparaíso, Valparaíso 2430120, Chile)

  • Pablo Rodríguez Machuca

    (Departamento de Geografía, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago de Chile 9170020, Chile)

  • Angel Alexander Rodríguez Soto

    (Escuela de Ingeniería Mecánica, Quilpué, Pontificia Universidad Católica de Valparaíso, Valparaíso 2430120, Chile)

  • Roberto Carmona Campos

    (Escuela de Ingeniería Mecánica, Quilpué, Pontificia Universidad Católica de Valparaíso, Valparaíso 2430120, Chile)

Abstract

The paper presents a complete value chain for the use of green hydrogen in a port facility. The main objective was to propose the sizing of the main components that make up green hydrogen to ensure the supply of 1 MW e in replacing the diesel generator. The energy demand required for the port was determined by establishing the leading small and large-scale conventional energy-consuming equipment. Hence, 60 kg H2 was required to ensure the power supply. The total electrical energy to produce all the hydrogen was generated from photovoltaic solar energy, considering three-generation scenarios (minimum, maximum and the annual average). In all cases, the energy supply in the electrolyzer was 3.08 MW e . In addition, the effect of generating in the port facility using a diesel generator and a fuel cell was compared. The cost of 1 kg H2 could be 4.09 times higher than the cost of 1 L of diesel, meaning that the output kWh of each system is economically similar. In addition, the value of electrical energy through a Power Purchase Agreement (PPA) was a maximum of 79.79 times the value of a liter of diesel. Finally, the Levelized Cost of Energy (LCOE) was calculated for two conditions in which the MW e was obtained from the fuel cell without and with the photovoltaic solar plant.

Suggested Citation

  • Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13681-:d:699715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    2. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2015. "Techno-economic and policy requirements for the market-entry of the fuel cell micro-CHP system in the residential sector," Applied Energy, Elsevier, vol. 143(C), pages 370-382.
    3. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    4. Fúnez Guerra, C. & Reyes-Bozo, L. & Vyhmeister, E. & Jaén Caparrós, M. & Salazar, José Luis & Clemente-Jul, C., 2020. "Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan," Renewable Energy, Elsevier, vol. 157(C), pages 404-414.
    5. Morgan, Eric & Manwell, James & McGowan, Jon, 2014. "Wind-powered ammonia fuel production for remote islands: A case study," Renewable Energy, Elsevier, vol. 72(C), pages 51-61.
    6. Yunesky Masip & Anibal Gutierrez & Joel Morales & Antonio Campo & Meyli Valín, 2019. "Integrated Renewable Energy System Based on IREOM Model and Spatial–Temporal Series for Isolated Rural Areas in the Region of Valparaiso, Chile," Energies, MDPI, vol. 12(6), pages 1-19, March.
    7. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    8. Jasmine Siu Lee Lam & Theo Notteboom, 2014. "The Greening of Ports: A Comparison of Port Management Tools Used by Leading Ports in Asia and Europe," Transport Reviews, Taylor & Francis Journals, vol. 34(2), pages 169-189, March.
    9. Thorsten Schuetze & Joong-Won Lee & Tae-Goo Lee, 2013. "Sustainable Urban (re-)Development with Building Integrated Energy, Water and Waste Systems," Sustainability, MDPI, vol. 5(3), pages 1-14, March.
    10. Lu, Bin & Blakers, Andrew & Stocks, Matthew, 2017. "90–100% renewable electricity for the South West Interconnected System of Western Australia," Energy, Elsevier, vol. 122(C), pages 663-674.
    11. dos Santos, Kenia Gabriela & Eckert, Caroline Thaís & De Rossi, Eduardo & Bariccatti, Reinaldo Aparecido & Frigo, Elisandro Pires & Lindino, Cleber Antonio & Alves, Helton José, 2017. "Hydrogen production in the electrolysis of water in Brazil, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 563-571.
    12. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    13. Blakers, Andrew & Lu, Bin & Stocks, Matthew, 2017. "100% renewable electricity in Australia," Energy, Elsevier, vol. 133(C), pages 471-482.
    14. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    15. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    16. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    17. Michele Acciaro & Thierry Vanelslander & Christa Sys & Claudio Ferrari & Athena Roumboutsos & Genevieve Giuliano & Jasmine Siu Lee Lam & Seraphim Kapros, 2014. "Environmental sustainability in seaports: a framework for successful innovation," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(5), pages 480-500, September.
    18. Jochen Markard, 2018. "The next phase of the energy transition and its implications for research and policy," Nature Energy, Nature, vol. 3(8), pages 628-633, August.
    19. Anshuman Chaube & Andrew Chapman & Yosuke Shigetomi & Kathryn Huff & James Stubbins, 2020. "The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals," Energies, MDPI, vol. 13(17), pages 1-17, September.
    20. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    21. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garcia G., Matias & Oliva H., Sebastian, 2023. "Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile," Energy, Elsevier, vol. 278(PB).
    2. Ang Yang & Xiangyu Meng & He He & Liang Wang & Jing Gao, 2022. "Towards Optimized ARMGs’ Low-Carbon Transition Investment Decision Based on Real Options," Energies, MDPI, vol. 15(14), pages 1-16, July.
    3. Emigdio Chavez-Angel & Alejandro Castro-Alvarez & Nicolas Sapunar & Francisco Henríquez & Javier Saavedra & Sebastián Rodríguez & Iván Cornejo & Lindley Maxwell, 2023. "Exploring the Potential of Green Hydrogen Production and Application in the Antofagasta Region of Chile," Energies, MDPI, vol. 16(11), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badami, Marco & Fambri, Gabriele, 2019. "Optimising energy flows and synergies between energy networks," Energy, Elsevier, vol. 173(C), pages 400-412.
    2. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    3. Anas S. Alamoush & Dimitrios Dalaklis & Fabio Ballini & Aykut I. Ölcer, 2023. "Consolidating Port Decarbonisation Implementation: Concept, Pathways, Barriers, Solutions, and Opportunities," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
    4. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    5. Bellocchi, Sara & De Falco, Marcello & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2019. "Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 175(C), pages 847-861.
    6. Sofia Agostinelli & Mehdi Neshat & Meysam Majidi Nezhad & Giuseppe Piras & Davide Astiaso Garcia, 2022. "Integrating Renewable Energy Sources in Italian Port Areas towards Renewable Energy Communities," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    7. Mukelabai, Mulako Dean & Wijayantha, Upul K.G. & Blanchard, Richard E., 2022. "Renewable hydrogen economy outlook in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 617-639.
    9. Egerer, Jonas & Grimm, Veronika & Niazmand, Kiana & Runge, Philipp, 2023. "The economics of global green ammonia trade – “Shipping Australian wind and sunshine to Germany”," Applied Energy, Elsevier, vol. 334(C).
    10. Eveloy, Valerie, 2019. "Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 550-571.
    11. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    12. Quarton, Christopher J. & Samsatli, Sheila, 2020. "Should we inject hydrogen into gas grids? Practicalities and whole-system value chain optimisation," Applied Energy, Elsevier, vol. 275(C).
    13. Szoplik, Jolanta & Stelmasińska, Paulina, 2019. "Analysis of gas network storage capacity for alternative fuels in Poland," Energy, Elsevier, vol. 172(C), pages 343-353.
    14. Furat Dawood & GM Shafiullah & Martin Anda, 2020. "Stand-Alone Microgrid with 100% Renewable Energy: A Case Study with Hybrid Solar PV-Battery-Hydrogen," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    15. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    16. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    17. Chin-Shan Lu & Kuo-Chung Shang & Chi-Chang Lin, 2016. "Examining sustainability performance at ports: port managers’ perspectives on developing sustainable supply chains," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(8), pages 909-927, November.
    18. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    20. Victor Soto & Claudia Ulloa & Ximena Garcia, 2021. "A CFD Design Approach for Industrial Size Tubular Reactors for SNG Production from Biogas (CO 2 Methanation)," Energies, MDPI, vol. 14(19), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13681-:d:699715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.