IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v312y2022ics030626192200112x.html
   My bibliography  Save this article

Identifying coal plants for early retirement in India: A multidimensional analysis of technical, economic, and environmental factors

Author

Listed:
  • Maamoun, Nada
  • Chitkara, Puneet
  • Yang, Joonseok
  • Shrimali, Gireesh
  • Busby, Joshua
  • Shidore, Sarang
  • Jin, Yana
  • Urpelainen, Johannes

Abstract

Coal-fired energy generation is the backbone of India’s power sector and considered a driver of its economic development. However, it is associated with detrimental environmental and health impacts in India and its fleet is currently struggling with overcapacity and inefficiency problems. One solution to address these challenges is the early retirement of some of India’s coal-fired power plants. In this paper, we introduce multidimensional indices that identify plants for retirement based on comprehensive criteria that include technical and economic characteristics of plants as well as their environmental impacts. We implement an ensemble approach, where we formulate 8008 indices based on all possible combination of seven relevant parameters and rank plants accordingly. This approach facilitates a comprehensive analysis of the plants’ performance on different parameters and provides a new outlook on plant retirements that differs from the common approach of retiring plants based solely on technical characteristics such as age, capacity, and heat rate. Our results show that top plants recommended for early retirement are typically 7 years older, 13% more expensive and have around 40% higher population exposure to emissions compared to an average plant in India. We estimate the potential costs saved from the retirement of the worst-performing 50 GW of generating capacity to be $21 billion resulting from shifting ownership towards a cheaper cost of capital and replacing coal by more competitive sources such as solar power.

Suggested Citation

  • Maamoun, Nada & Chitkara, Puneet & Yang, Joonseok & Shrimali, Gireesh & Busby, Joshua & Shidore, Sarang & Jin, Yana & Urpelainen, Johannes, 2022. "Identifying coal plants for early retirement in India: A multidimensional analysis of technical, economic, and environmental factors," Applied Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:appene:v:312:y:2022:i:c:s030626192200112x
    DOI: 10.1016/j.apenergy.2022.118644
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192200112X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Dan Tong & Qiang Zhang & Steven J. Davis & Fei Liu & Bo Zheng & Guannan Geng & Tao Xue & Meng Li & Chaopeng Hong & Zifeng Lu & David G. Streets & Dabo Guan & Kebin He, 2018. "Targeted emission reductions from global super-polluting power plant units," Nature Sustainability, Nature, vol. 1(1), pages 59-68, January.
    3. Hei Sing (Ron) Chan & Maureen L. Cropper & Kabir Malik, 2014. "Why Are Power Plants in India Less Efficient Than Power Plants in the United States?," American Economic Review, American Economic Association, vol. 104(5), pages 586-590, May.
    4. Maamoun, Nada & Kennedy, Ryan & Jin, Xiaomeng & Urpelainen, Johannes, 2020. "Identifying coal-fired power plants for early retirement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    5. Mikel González-Eguino & Antxón Olabe & Teresa Ribera, 2017. "New Coal-Fired Plants Jeopardise Paris Agreement," Sustainability, MDPI, vol. 9(2), pages 1-4, January.
    6. Sebastian Rauner & Nico Bauer & Alois Dirnaichner & Rita Van Dingenen & Chris Mutel & Gunnar Luderer, 2020. "Coal-exit health and environmental damage reductions outweigh economic impacts," Nature Climate Change, Nature, vol. 10(4), pages 308-312, April.
    7. C. Oberschelp & S. Pfister & C. E. Raptis & S. Hellweg, 2019. "Global emission hotspots of coal power generation," Nature Sustainability, Nature, vol. 2(2), pages 113-121, February.
    8. Ranjit Deshmukh & Amol Phadke & Duncan S. Callaway, 2021. "Least-cost targets and avoided fossil fuel capacity in India’s pursuit of renewable energy," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(13), pages 2008128118-, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Minsung & Hwang, Taegam & Park, Yeseul & Li, Xinzhuo & Kim, Junsung & Kim, Kibeom & Sung, Yonmo & Choi, Gyungmin, 2023. "Numerical evaluation of the effect of swirl configuration and fuel-rich environment on combustion and emission characteristics in a coal-fired boiler," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xizhe Yan & Dan Tong & Yixuan Zheng & Yang Liu & Shaoqing Chen & Xinying Qin & Chuchu Chen & Ruochong Xu & Jing Cheng & Qinren Shi & Dongsheng Zheng & Kebin He & Qiang Zhang & Yu Lei, 2024. "Cost-effectiveness uncertainty may bias the decision of coal power transitions in China," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Di Wu & Haotian Zheng & Qing Li & Ling Jin & Rui Lyu & Xiang Ding & Yaoqiang Huo & Bin Zhao & Jingkun Jiang & Jianmin Chen & Xiangdong Li & Shuxiao Wang, 2022. "Toxic potency-adjusted control of air pollution for solid fuel combustion," Nature Energy, Nature, vol. 7(2), pages 194-202, February.
    3. Xiahou, Qinrui & Springer, Cecilia Han & Mendelsohn, Robert, 2022. "The effect of foreign investment on Asian coal power plants," Energy Economics, Elsevier, vol. 105(C).
    4. Di Wu & Haotian Zheng & Qing Li & Shuxiao Wang & Bin Zhao & Ling Jin & Rui Lyu & Shengyue Li & Yuzhe Liu & Xiu Chen & Fenfen Zhang & Qingru Wu & Tonghao Liu & Jingkun Jiang & Lin Wang & Xiangdong Li &, 2023. "Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    6. Koh, Rachel & Kern, Jordan & Galelli, Stefano, 2022. "Hard-coupling water and power system models increases the complementarity of renewable energy sources," Applied Energy, Elsevier, vol. 321(C).
    7. Hamish van der Ven & Yixian Sun, 2021. "Varieties of Crises: Comparing the Politics of COVID-19 and Climate Change," Global Environmental Politics, MIT Press, vol. 21(1), pages 13-22, Winter.
    8. Christian Hauenstein & Franziska Holz & Lennart Rathje & Thomas Mitterecker, 2022. "Stranded Assets in the Coal Export Industry? The Case of the Australian Galilee Basin," Discussion Papers of DIW Berlin 2003, DIW Berlin, German Institute for Economic Research.
    9. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    11. Ayaz, Muhammad & Jehan, Noor & Nakonieczny, Joanna & Mentel, Urszula & uz zaman, Qamar, 2022. "Health costs of environmental pollution faced by underground coal miners: Evidence from Balochistan, Pakistan," Resources Policy, Elsevier, vol. 76(C).
    12. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    13. Sushama Murty & Resham Nagpal, "undated". "Measuring output-based technical efficiency of Indian coal-based thermal power plants: A by-production approach," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-07, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    14. Gupta, Ridhima & Pelli, Martino, 2021. "Electrification and cooking fuel choice in rural India," World Development, Elsevier, vol. 146(C).
    15. Rosalie Arendt & Till M. Bachmann & Masaharu Motoshita & Vanessa Bach & Matthias Finkbeiner, 2020. "Comparison of Different Monetization Methods in LCA: A Review," Sustainability, MDPI, vol. 12(24), pages 1-39, December.
    16. Yong, Qingqing & Jin, Kaiyuan & Li, Xiaobo & Yang, Ronggui, 2023. "Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant," Energy, Elsevier, vol. 280(C).
    17. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    18. Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
    19. Yali Zheng & Xiaoyi He & Hewu Wang & Michael Wang & Shaojun Zhang & Dong Ma & Binggang Wang & Ye Wu, 2020. "Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 355-370, March.
    20. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).

    More about this item

    Keywords

    Coal energy; Retirement Pathways; Air pollution; Climate Change; Cost Savings;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:312:y:2022:i:c:s030626192200112x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.