IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v267y2020ics0306261920304487.html
   My bibliography  Save this article

Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids

Author

Listed:
  • Abdul-Manan, Amir F.N.
  • Won, Hyun-Woo
  • Li, Yang
  • Sarathy, S. Mani
  • Xie, Xiaomin
  • Amer, Amer A.

Abstract

The transition to low-carbon mobility could lead to drastic increases in critical mineral requirements risking adverse ecological and societal impacts. Assessments of climate change mitigation potential of new technologies often pay less attention to the criticality of the enabling minerals. We assessed the effects of adopting 4 hybrid architectures on the life-cycle GHG emissions of an emerging fuel and powertrain solution: the use of a novel high-reactivity fuel in an advanced compression-ignition engine (GCI). The 4 hybrids were contrasted against conventional fuels/engines, and a comparable battery electric vehicle using regionally-explicit power mixes in the 3 biggest automotive markets worldwide (China, USA and Europe). The use of larger batteries enabled higher degrees of electrification and it could lead to lower overall emissions. However, there is diminishing returns for every kWh of increasing battery size: a mild hybrid resulted in more than 50% GHG reduction per kWh of battery, whereas an electric vehicle only reduced emission by 4% per kWh given its much larger battery requirement. Given the sustainability constraints of critical raw minerals supply, and the heterogeneity of regional power grids, advanced GCI hybrid architectures, with varying degrees of electrification, can bridge the gap in the interim.

Suggested Citation

  • Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:appene:v:267:y:2020:i:c:s0306261920304487
    DOI: 10.1016/j.apenergy.2020.114936
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 543(7645), pages 367-372, March.
    2. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    3. Abdul-Manan, Amir F.N., 2015. "Uncertainty and differences in GHG emissions between electric and conventional gasoline vehicles with implications for transport policy making," Energy Policy, Elsevier, vol. 87(C), pages 1-7.
    4. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    5. Meinrenken, Christoph J. & Lackner, Klaus S., 2015. "Fleet view of electrified transportation reveals smaller potential to reduce GHG emissions," Applied Energy, Elsevier, vol. 138(C), pages 393-403.
    6. Célestin Banza Lubaba Nkulu & Lidia Casas & Vincent Haufroid & Thierry De Putter & Nelly D. Saenen & Tony Kayembe-Kitenge & Paul Musa Obadia & Daniel Kyanika Wa Mukoma & Jean-Marie Lunda Ilunga & Tim , 2018. "Sustainability of artisanal mining of cobalt in DR Congo," Nature Sustainability, Nature, vol. 1(9), pages 495-504, September.
    7. Tokimatsu, Koji & Wachtmeister, Henrik & McLellan, Benjamin & Davidsson, Simon & Murakami, Shinsuke & Höök, Mikael & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2°C target," Applied Energy, Elsevier, vol. 207(C), pages 494-509.
    8. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    9. Abdul-Manan, Amir F.N. & Arfaj, Abdullah & Babiker, Hassan, 2017. "Oil refining in a CO2 constrained world: Effects of carbon pricing on refineries globally," Energy, Elsevier, vol. 121(C), pages 264-275.
    10. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries," Energy Policy, Elsevier, vol. 39(2), pages 803-811, February.
    12. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    13. Li, Xin & Chalvatzis, Konstantinos J. & Pappas, Dimitrios, 2018. "Life cycle greenhouse gas emissions from power generation in China’s provinces in 2020," Applied Energy, Elsevier, vol. 223(C), pages 93-102.
    14. Ma, Hongrui & Balthasar, Felix & Tait, Nigel & Riera-Palou, Xavier & Harrison, Andrew, 2012. "A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles," Energy Policy, Elsevier, vol. 44(C), pages 160-173.
    15. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    16. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    17. Lewis Fulton & Oliver Lah & François Cuenot, 2013. "Transport Pathways for Light Duty Vehicles: Towards a 2° Scenario," Sustainability, MDPI, vol. 5(5), pages 1-12, April.
    18. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Chiang, Yet-Ming & Green, William H., 2019. "Learning only buys you so much: Practical limits on battery price reduction," Applied Energy, Elsevier, vol. 239(C), pages 218-224.
    19. Yi, Chenyu & Epureanu, Bogdan I. & Hong, Sung-Kwon & Ge, Tony & Yang, Xiao Guang, 2016. "Modeling, control, and performance of a novel architecture of hybrid electric powertrain system," Applied Energy, Elsevier, vol. 178(C), pages 454-467.
    20. Goh, Tian & Ang, B.W. & Su, Bin & Wang, H., 2018. "Drivers of stagnating global carbon intensity of electricity and the way forward," Energy Policy, Elsevier, vol. 113(C), pages 149-156.
    21. Wu, Ye & Yang, Zhengdong & Lin, Bohong & Liu, Huan & Wang, Renjie & Zhou, Boya & Hao, Jiming, 2012. "Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China," Energy Policy, Elsevier, vol. 48(C), pages 537-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serrano, José Ramón & García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago, 2021. "High efficiency two stroke opposed piston engine for plug-in hybrid electric vehicle applications: Evaluation under homologation and real driving conditions," Applied Energy, Elsevier, vol. 282(PA).
    2. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    3. Abdullah U. Bajwa & Felix C. P. Leach & Martin H. Davy, 2023. "Prospects of Controlled Auto-Ignition Based Thermal Propulsion Units for Modern Gasoline Vehicles," Energies, MDPI, vol. 16(9), pages 1-45, May.
    4. Omid Doustdar & Soheil Zeraati-Rezaei & Jose Martin Herreros & Athanasios Tsolakis & Karl D. Dearn & Miroslaw Lech Wyszynski, 2021. "Tribological Performance of Biomass-Derived Bio-Alcohol and Bio-Ketone Fuels," Energies, MDPI, vol. 14(17), pages 1-11, August.
    5. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    6. García, Antonio & Carlucci, Paolo & Monsalve-Serrano, Javier & Valletta, Andrea & Martínez-Boggio, Santiago, 2021. "Energy management optimization for a power-split hybrid in a dual-mode RCCI-CDC engine," Applied Energy, Elsevier, vol. 302(C).
    7. Galindo, José & Serrano, José Ramón & De la Morena, Joaquín & Gómez-Vilanova, Alejandro, 2022. "Physical-based variable geometry turbines predictive control to enhance new hybrid powertrains’ transient response," Energy, Elsevier, vol. 261(PB).
    8. Cho, Hannah Hyunah & Strezov, Vladimir, 2021. "Comparative analysis of the environmental impacts of Australian thermal power stations using direct emission data and GIS integrated methods," Energy, Elsevier, vol. 231(C).
    9. Serrano, J.R. & Arnau, F.J. & Bares, P. & Gomez-Vilanova, A. & Garrido-Requena, J. & Luna-Blanca, M.J. & Contreras-Anguita, F.J., 2021. "Analysis of a novel concept of 2-stroke rod-less opposed pistons engine (2S-ROPE): Testing, modelling, and forward potential," Applied Energy, Elsevier, vol. 282(PA).
    10. Cruz, José Ramón Serrano & López, J. Javier & Climent, Héctor & Gómez-Vilanova, Alejandro, 2023. "Method for turbocharging and supercharging 2-stroke engines, applied to an opposed-piston new concept for hybrid powertrains," Applied Energy, Elsevier, vol. 351(C).
    11. Plunkett, Samuel T. & Chen, Chengxiu & Rojaee, Ramin & Doherty, Patrick & Sik Oh, Yun & Galazutdinova, Yana & Krishnamurthy, Mahesh & Al-Hallaj, Said, 2021. "Enhancing thermal safety in lithium-ion battery packs through parallel cell ‘current dumping’ mitigation," Applied Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Manjunath, Archana & Gross, George, 2017. "Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs)," Energy Policy, Elsevier, vol. 102(C), pages 423-429.
    3. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    4. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    5. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    6. Abdul-Manan, Amir F.N., 2015. "Uncertainty and differences in GHG emissions between electric and conventional gasoline vehicles with implications for transport policy making," Energy Policy, Elsevier, vol. 87(C), pages 1-7.
    7. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
    8. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
    9. Will, Christian & Zimmermann, Florian & Ensslen, Axel & Fraunholz, Christoph & Jochem, Patrick & Keles, Dogan, 2023. "Can electric vehicle charging be carbon neutral? Uniting smart charging and renewables," Working Paper Series in Production and Energy 69, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    10. Harris, Andrew & Soban, Danielle & Smyth, Beatrice M. & Best, Robert, 2020. "A probabilistic fleet analysis for energy consumption, life cycle cost and greenhouse gas emissions modelling of bus technologies," Applied Energy, Elsevier, vol. 261(C).
    11. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
    12. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    13. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
    15. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    16. Raimund Bleischwitz, 2020. "Mineral resources in the age of climate adaptation and resilience," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 291-299, April.
    17. Huiling Wang & Jiaxin Luo & Mengtian Zhang & Yue Ling, 2022. "The Impact of Transportation Restructuring on the Intensity of Greenhouse Gas Emissions: Empirical Data from China," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    18. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    19. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    20. Requia, Weeberb J. & Adams, Matthew D. & Arain, Altaf & Koutrakis, Petros & Ferguson, Mark, 2017. "Carbon dioxide emissions of plug-in hybrid electric vehicles: A life-cycle analysis in eight Canadian cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1390-1396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:267:y:2020:i:c:s0306261920304487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.