IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v260y2020ics0306261919319142.html
   My bibliography  Save this article

Economic analysis of a nuclear hybrid energy system in a stochastic environment including wind turbines in an electricity grid

Author

Listed:
  • Epiney, A.
  • Rabiti, C.
  • Talbot, P.
  • Alfonsi, A.

Abstract

The electricity market in the U.S. is moving toward an energy mix including more variable renewable energy (VRE) sources like wind and solar. This increasing VRE penetration is altering the profile of the net electricity demand. Traditionally, flexible generators (e.g. gas turbines) are used to absorb fluctuations in the electricity demand. Therefore, an increase in VRE also leads to an increase in installed capacity for such flexible generators which, in turn, may increase the price of electricity. Nuclear-Renewable Hybrid Energy Systems (N-R HES) are seen as a solution to this problem. The N-R HES contains a nuclear power plant electrically and/or thermally linked to an industrial process (IP). This paper demonstrates a new methodology and presents the corresponding RAVEN/Modelica-based software framework to evaluate the financial performance of N-R HES. The novelty of the method is that it explicitly incorporates the stochastic nature of N-R HES inputs such as electricity demand and wind speeds. The method is applied to a generic (rather than region-specific) N-R HES. The analysis shows that under the right market conditions, economic benefits can be achieved by adding a suitable IP to the base-load generator. In particular, there exists an optimal relationship between the IP capacity and the demand. Global trends also indicate VRE penetration raises the cost of electricity due to the added volatility, an issue only mitigated when operating with high profit margins for the IP.

Suggested Citation

  • Epiney, A. & Rabiti, C. & Talbot, P. & Alfonsi, A., 2020. "Economic analysis of a nuclear hybrid energy system in a stochastic environment including wind turbines in an electricity grid," Applied Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319142
    DOI: 10.1016/j.apenergy.2019.114227
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919319142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jong Suk & Chen, Jun & Garcia, Humberto E., 2016. "Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems," Energy, Elsevier, vol. 112(C), pages 52-66.
    2. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
    3. Khawaja, Yara & Allahham, Adib & Giaouris, Damian & Patsios, Charalampos & Walker, Sara & Qiqieh, Issa, 2019. "An integrated framework for sizing and energy management of hybrid energy systems using finite automata," Applied Energy, Elsevier, vol. 250(C), pages 257-272.
    4. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part II: Dynamic cost analysis," Energy, Elsevier, vol. 52(C), pages 17-26.
    5. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    6. Ekundayo Shittu & Erin Baker, 2009. "A control model of policy uncertainty and energy R&D investments," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 32(4), pages 307-327.
    7. of England, Bank, 2016. "Markets and operations," Bank of England Quarterly Bulletin, Bank of England, vol. 56(4), pages 212-221.
    8. Garcia, Humberto E. & Mohanty, Amit & Lin, Wen-Chiao & Cherry, Robert S., 2013. "Dynamic analysis of hybrid energy systems under flexible operation and variable renewable generation – Part I: Dynamic performance analysis," Energy, Elsevier, vol. 52(C), pages 1-16.
    9. Altmann, Thomas & Robert, Justin & Bouma, Andrew & Swaminathan, Jaichander & Lienhard, John H., 2019. "Primary energy and exergy of desalination technologies in a power-water cogeneration scheme," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    10. Garcia, Humberto E. & Chen, Jun & Kim, Jong S. & Vilim, Richard B. & Binder, William R. & Bragg Sitton, Shannon M. & Boardman, Richard D. & McKellar, Michael G. & Paredis, Christiaan J.J., 2016. "Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems," Energy, Elsevier, vol. 107(C), pages 234-258.
    11. Kim, Jong Suk & Boardman, Richard D. & Bragg-Sitton, Shannon M., 2018. "Dynamic performance analysis of a high-temperature steam electrolysis plant integrated within nuclear-renewable hybrid energy systems," Applied Energy, Elsevier, vol. 228(C), pages 2090-2110.
    12. Baker, T.E. & Epiney, A.S. & Rabiti, C. & Shittu, E., 2018. "Optimal sizing of flexible nuclear hybrid energy system components considering wind volatility," Applied Energy, Elsevier, vol. 212(C), pages 498-508.
    13. Forsberg, Charles, 2013. "Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids," Energy Policy, Elsevier, vol. 62(C), pages 333-341.
    14. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia Zhou & Hany Abdel-Khalik & Paul Talbot & Cristian Rabiti, 2021. "A Hybrid Energy System Workflow for Energy Portfolio Optimization," Energies, MDPI, vol. 14(15), pages 1-28, July.
    2. Yi, Zonggen & Luo, Yusheng & Westover, Tyler & Katikaneni, Sravya & Ponkiya, Binaka & Sah, Suba & Mahmud, Sadab & Raker, David & Javaid, Ahmad & Heben, Michael J. & Khanna, Raghav, 2022. "Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    3. Johan Augusto Bocanegra Cifuentes & Davide Borelli & Antonio Cammi & Guglielmo Lomonaco & Mario Misale, 2020. "Lattice Boltzmann Method Applied to Nuclear Reactors—A Systematic Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-37, September.
    4. Gong, Yu & Liu, Pan & Liu, Yini & Huang, Kangdi, 2021. "Robust operation interval of a large-scale hydro-photovoltaic power system to cope with emergencies," Applied Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
    2. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    3. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    4. Alipour, Manijeh & Mohammadi-Ivatloo, Behnam & Moradi-Dalvand, Mohammad & Zare, Kazem, 2017. "Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets," Energy, Elsevier, vol. 118(C), pages 1168-1179.
    5. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    6. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
    7. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2017. "Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology," Energy, Elsevier, vol. 120(C), pages 608-618.
    8. Baker, T.E. & Epiney, A.S. & Rabiti, C. & Shittu, E., 2018. "Optimal sizing of flexible nuclear hybrid energy system components considering wind volatility," Applied Energy, Elsevier, vol. 212(C), pages 498-508.
    9. Chua, Kein Huat & Lim, Yun Seng & Morris, Stella, 2017. "A novel fuzzy control algorithm for reducing the peak demands using energy storage system," Energy, Elsevier, vol. 122(C), pages 265-273.
    10. Kim, Jong Suk & Chen, Jun & Garcia, Humberto E., 2016. "Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems," Energy, Elsevier, vol. 112(C), pages 52-66.
    11. Garcia, Humberto E. & Chen, Jun & Kim, Jong S. & Vilim, Richard B. & Binder, William R. & Bragg Sitton, Shannon M. & Boardman, Richard D. & McKellar, Michael G. & Paredis, Christiaan J.J., 2016. "Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems," Energy, Elsevier, vol. 107(C), pages 234-258.
    12. Every, Jeremy & Li, Li & Dorrell, David G., 2017. "Leveraging smart meter data for economic optimization of residential photovoltaics under existing tariff structures and incentive schemes," Applied Energy, Elsevier, vol. 201(C), pages 158-173.
    13. Bin Luo & Shumin Miao & Chuntian Cheng & Yi Lei & Gang Chen & Lang Gao, 2019. "Long-Term Generation Scheduling for Cascade Hydropower Plants Considering Price Correlation between Multiple Markets," Energies, MDPI, vol. 12(12), pages 1-17, June.
    14. Sampath Kumar Venkatachary & Jagdish Prasad & Ravi Samikannu & Annamalai Alagappan & Leo John Baptist & Raymon Antony Raj, 2020. "Macro Economics of Virtual Power Plant for Rural Areas of Botswana," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 196-207.
    15. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    16. Hirsh Bar Gai, Dor & Shittu, Ekundayo & Attanasio, Donna & Weigelt, Carmen & LeBlanc, Saniya & Dehghanian, Payman & Sklar, Scott, 2021. "Examining community solar programs to understand accessibility and investment: Evidence from the U.S," Energy Policy, Elsevier, vol. 159(C).
    17. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
    18. Xiaopeng Guo & Xiaodan Guo & Jiahai Yuan, 2014. "Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China," Sustainability, MDPI, vol. 7(1), pages 1-21, December.
    19. Xiaodan Guo & Dongxiao Niu & Bowen Xiao, 2016. "Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis," Energies, MDPI, vol. 9(5), pages 1-23, May.
    20. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.