IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v201y2017icp158-173.html
   My bibliography  Save this article

Leveraging smart meter data for economic optimization of residential photovoltaics under existing tariff structures and incentive schemes

Author

Listed:
  • Every, Jeremy
  • Li, Li
  • Dorrell, David G.

Abstract

The introduction of smart grid technologies and the impending removal of incentive schemes is likely to complicate the cost-effective selection and integration of residential PV systems in the future. With the widespread integration of smart meters, consumers can leverage the high temporal resolution of energy consumption data to optimize a PV system based on their individual circumstances. In this article, such an optimization strategy is developed to enable the optimal selection of size, tilt, azimuth and retail electricity plan for a residential PV system based on hourly consumption data. Hourly solar insolation and PV array generation models are presented as the principal components of the underlying objective function. A net present value analysis of the potential monetary savings is considered and set as the optimization objective. A particle swarm optimization algorithm is utilized, modified to include a penalty function in order to handle associated constraints. The optimization problem is applied to real-world Australian consumption data to establish the economic performance and characteristics of the optimized systems. For all customers assessed, an optimized PV system producing a positive economic benefit could be found. However not all investment options were found to be desirable with at most 77.5% of customers yielding an acceptable rate of return. For the customers assessed, the mean PV system size was found to be 2kW less than the mean size of actual systems installed in the assessed locations during 2015 and 2016. Over-sizing of systems was found to significantly reduce the potential net benefit of residential PV from an investor’s perspective. The results presented in this article highlight the necessity for economic performance optimization to be routinely implemented for small-scale residential PV under current regulatory and future smart grid operating environments.

Suggested Citation

  • Every, Jeremy & Li, Li & Dorrell, David G., 2017. "Leveraging smart meter data for economic optimization of residential photovoltaics under existing tariff structures and incentive schemes," Applied Energy, Elsevier, vol. 201(C), pages 158-173.
  • Handle: RePEc:eee:appene:v:201:y:2017:i:c:p:158-173
    DOI: 10.1016/j.apenergy.2017.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917305317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pillai, Gobind G. & Putrus, Ghanim A. & Georgitsioti, Tatiani & Pearsall, Nicola M., 2014. "Near-term economic benefits from grid-connected residential PV (photovoltaic) systems," Energy, Elsevier, vol. 68(C), pages 832-843.
    2. Chang, Ying-Pin, 2010. "Optimal the tilt angles for photovoltaic modules using PSO method with nonlinear time-varying evolution," Energy, Elsevier, vol. 35(5), pages 1954-1963.
    3. Numbi, B.P. & Malinga, S.J., 2017. "Optimal energy cost and economic analysis of a residential grid-interactive solar PV system- case of eThekwini municipality in South Africa," Applied Energy, Elsevier, vol. 186(P1), pages 28-45.
    4. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
    5. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    6. Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
    7. of England, Bank, 2016. "Markets and operations," Bank of England Quarterly Bulletin, Bank of England, vol. 56(4), pages 212-221.
    8. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
    9. Merei, Ghada & Moshövel, Janina & Magnor, Dirk & Sauer, Dirk Uwe, 2016. "Optimization of self-consumption and techno-economic analysis of PV-battery systems in commercial applications," Applied Energy, Elsevier, vol. 168(C), pages 171-178.
    10. Han, Xiaojuan & Zhang, Hua & Yu, Xiaoling & Wang, Lina, 2016. "Economic evaluation of grid-connected micro-grid system with photovoltaic and energy storage under different investment and financing models," Applied Energy, Elsevier, vol. 184(C), pages 103-118.
    11. Noorian, Ali Mohammad & Moradi, Isaac & Kamali, Gholam Ali, 2008. "Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces," Renewable Energy, Elsevier, vol. 33(6), pages 1406-1412.
    12. Koo, Choongwan & Hong, Taehoon & Lee, Minhyun & Kim, Jimin, 2016. "An integrated multi-objective optimization model for determining the optimal solution in implementing the rooftop photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 822-837.
    13. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    14. Mulder, Grietus & Six, Daan & Claessens, Bert & Broes, Thijs & Omar, Noshin & Mierlo, Joeri Van, 2013. "The dimensioning of PV-battery systems depending on the incentive and selling price conditions," Applied Energy, Elsevier, vol. 111(C), pages 1126-1135.
    15. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2016. "Assessing the influence of the temporal resolution of electrical load and PV generation profiles on self-consumption and sizing of PV-battery systems," Applied Energy, Elsevier, vol. 173(C), pages 331-342.
    16. González, Arnau & Riba, Jordi-Roger & Rius, Antoni & Puig, Rita, 2015. "Optimal sizing of a hybrid grid-connected photovoltaic and wind power system," Applied Energy, Elsevier, vol. 154(C), pages 752-762.
    17. Bakhshi, Reza & Sadeh, Javad, 2016. "A comprehensive economic analysis method for selecting the PV array structure in grid–connected photovoltaic systems," Renewable Energy, Elsevier, vol. 94(C), pages 524-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avilés A., Camilo & Oliva H., Sebastian & Watts, David, 2019. "Single-dwelling and community renewable microgrids: Optimal sizing and energy management for new business models," Applied Energy, Elsevier, vol. 254(C).
    2. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    2. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    3. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    4. Epiney, A. & Rabiti, C. & Talbot, P. & Alfonsi, A., 2020. "Economic analysis of a nuclear hybrid energy system in a stochastic environment including wind turbines in an electricity grid," Applied Energy, Elsevier, vol. 260(C).
    5. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    6. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    7. Lahnaoui, Amin & Stenzel, Peter & Linssen, Jochen, 2018. "Techno-economic analysis of photovoltaic battery system configuration and location☆," Applied Energy, Elsevier, vol. 227(C), pages 497-505.
    8. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    9. Tomar, Vivek & Tiwari, G.N., 2017. "Techno-economic evaluation of grid connected PV system for households with feed in tariff and time of day tariff regulation in New Delhi – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 822-835.
    10. Ahadi, Amir & Kang, Sang-Kyun & Lee, Jang-Ho, 2016. "A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities," Applied Energy, Elsevier, vol. 170(C), pages 101-115.
    11. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    12. Oh, Jeongyoon & Koo, Choongwan & Hong, Taehoon & Cha, Seung Hyun, 2018. "An integrated model for estimating the techno-economic performance of the distributed solar generation system on building façades: Focused on energy demand and supply," Applied Energy, Elsevier, vol. 228(C), pages 1071-1090.
    13. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
    14. Beck, T. & Kondziella, H. & Huard, G. & Bruckner, T., 2017. "Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity," Applied Energy, Elsevier, vol. 188(C), pages 604-619.
    15. Javed, Muhammad Shahzad & Song, Aotian & Ma, Tao, 2019. "Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island using genetic algorithm," Energy, Elsevier, vol. 176(C), pages 704-717.
    16. Peng Cheng & Ning Liang & Ruiye Li & Hai Lan & Qian Cheng, 2019. "Analysis of Influence of Ship Roll on Ship Power System with Renewable Energy," Energies, MDPI, vol. 13(1), pages 1-20, December.
    17. Garra, Patxi & Leyssens, Gontrand & Allgaier, Olivier & Schönnenbeck, Cornelius & Tschamber, Valérie & Brilhac, Jean-François & Tahtouh, Toni & Guézet, Olivier & Allano, Sylvain, 2017. "Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions," Applied Energy, Elsevier, vol. 189(C), pages 578-587.
    18. Sadeghi, Delnia & Hesami Naghshbandy, Ali & Bahramara, Salah, 2020. "Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization," Energy, Elsevier, vol. 209(C).
    19. von Appen, J. & Braun, M., 2018. "Interdependencies between self-sufficiency preferences, techno-economic drivers for investment decisions and grid integration of residential PV storage systems," Applied Energy, Elsevier, vol. 229(C), pages 1140-1151.
    20. Schram, Wouter L. & Lampropoulos, Ioannis & van Sark, Wilfried G.J.H.M., 2018. "Photovoltaic systems coupled with batteries that are optimally sized for household self-consumption: Assessment of peak shaving potential," Applied Energy, Elsevier, vol. 223(C), pages 69-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:201:y:2017:i:c:p:158-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.