IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v251y2019ic65.html
   My bibliography  Save this article

Lifetime optimized charging strategy of Li-ion cells based on daily driving cycle of electric two-wheelers

Author

Listed:
  • Rechkemmer, Sabrina Kathrin
  • Zang, Xiaoyun
  • Zhang, Weimin
  • Sawodny, Oliver

Abstract

Especially for electric two-wheelers (E2Ws), battery lifetime is a key challenge compared to electric vehicles (EVs) due to the lower battery capacity and thus higher cell-specific currents. This study therefore introduces an optimization framework for day-to-day routes in the metropolis of Shanghai with heavily frequented E2W traffic. The optimization aims at prolonging battery lifetime while not restricting the driver in their driving and usage behavior. This framework is based on accelerated aging tests of LMO cells as well as approximated battery aging and E2W powertrain models. Latter are applied to a typical driving profile of Shanghai. Central aim of the proposed framework is to identify relevant cycles and to optimize charging profiles under consideration of SOC constraints in order to extend battery lifetime. Both factors, targeted SOC and charging profiles, are known to have a significant impact on aging. Results are presented for different lengths of the driving cycle, initial SOCs, and temperatures and a heuristic charging rule is derived. One optimization scenario is validated by applying the optimal charging profile to typical cells used for E2W and by exploiting the targeted SOC as additional degree of freedom. The results are compared to a conventional strategy. Lifetime predictions expect a lifetime prolongation of half a year.

Suggested Citation

  • Rechkemmer, Sabrina Kathrin & Zang, Xiaoyun & Zhang, Weimin & Sawodny, Oliver, 2019. "Lifetime optimized charging strategy of Li-ion cells based on daily driving cycle of electric two-wheelers," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:251:y:2019:i:c:65
    DOI: 10.1016/j.apenergy.2019.113415
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191931089X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Caiping & Jiang, Jiuchun & Gao, Yang & Zhang, Weige & Liu, Qiujiang & Hu, Xiaosong, 2017. "Charging optimization in lithium-ion batteries based on temperature rise and charge time," Applied Energy, Elsevier, vol. 194(C), pages 569-577.
    2. Petit, Martin & Prada, Eric & Sauvant-Moynot, Valérie, 2016. "Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime," Applied Energy, Elsevier, vol. 172(C), pages 398-407.
    3. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
    4. Weinert, Jonathan X. & Ogden, Joan M. & Sperling, Dan & Burke, Andy, 2008. "The future of electric two-wheelers and electric vehicles in China," Institute of Transportation Studies, Working Paper Series qt0d05f8v9, Institute of Transportation Studies, UC Davis.
    5. Weinert, Jonathan & Ogden, Joan & Sperling, Dan & Burke, Andrew, 2008. "The future of electric two-wheelers and electric vehicles in China," Energy Policy, Elsevier, vol. 36(7), pages 2544-2555, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yuepeng & Xu, Hao & Zou, Fumin & Chen, Zhihui & Gong, Kuangmin, 2021. "Optimization based method to develop representative driving cycle for real-world fuel consumption estimation," Energy, Elsevier, vol. 235(C).
    2. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Ke, Yuzhi & Qiu, Zhiqiang & Luo, Jian & Tang, Yong & Wang, Chun & Yuan, Yuhang & Huang, Yao, 2020. "A review on structuralized current collectors for high-performance lithium-ion battery anodes," Applied Energy, Elsevier, vol. 276(C).
    3. Ahmed, Abdelsalam A. & Ramadan, Haitham S., 2020. "Prototype implementation of advanced electric vehicles drivetrain system: Verification and validation," Applied Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gihan Ekanayake & Mahesh Suresh Patil & Jae-Hyeong Seo & Moo-Yeon Lee, 2018. "Numerical Study on Heat Transfer Characteristics of the 36V Electronic Control Unit System for an Electric Bicycle," Energies, MDPI, vol. 11(10), pages 1-17, September.
    2. Kishimoto, Paul N. & Zhang, Da & Zhang, Xiliang & Karplus, Valerie J., 2013. "Modeling regional transportation demand in China and the impacts of a national carbon constraint," Conference papers 332390, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    4. Chen, Ching-Fu & Eccarius, Timo & Su, Pin-Chi, 2021. "The role of environmental concern in forming intentions for switching to electric scooters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 129-144.
    5. Xu, X.M. & He, R., 2014. "Review on the heat dissipation performance of battery pack with different structures and operation conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 301-315.
    6. Wells, Peter & Lin, Xiao, 2015. "Spontaneous emergence versus technology management in sustainable mobility transitions: Electric bicycles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 371-383.
    7. Babar, Abdul Haseeb Khan & Ali, Yousaf, 2021. "Enhancement of electric vehicles’ market competitiveness using fuzzy quality function deployment," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    8. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    9. Jun Li & Jiachao Shen & Bicen Jia, 2021. "Exploring Intention to Use Shared Electric Bicycles by the Extended Theory of Planned Behavior," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    10. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    11. Xiaozhou Ye, 2022. "Bike-Sharing Adoption in Cross-National Contexts: An Empirical Research on the Factors Affecting Users’ Intentions," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    12. Li, Xintong & Han, Chunyang & Huang, Helai & Pervez, Amjad & Xu, Guangming & Hu, Cheng & Jiang, Qianshan & Wei, Yulu, 2023. "Pursuing higher acceptability and compliance for electric two-wheeler standardization policy in China: The importance of socio-demographic characteristics, psychological factors, and travel habits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    13. Geoffrey Rose, 2012. "E-bikes and urban transportation: emerging issues and unresolved questions," Transportation, Springer, vol. 39(1), pages 81-96, January.
    14. Jago Dodson, 2014. "Suburbia under an Energy Transition: A Socio-technical Perspective," Urban Studies, Urban Studies Journal Limited, vol. 51(7), pages 1487-1505, May.
    15. John Humphrey & Ke Ding & Mai Fujita & Shiro Hioki & Koichiro Kimura, 2018. "Platforms, Innovation and Capability Development in the Chinese Domestic Market," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 30(3), pages 408-423, July.
    16. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.
    17. Tanto Adi Waluyo & Muhammad Zudhy Irawan & Dewanti, 2022. "Adopting Electric Motorcycles for Ride-Hailing Services: Influential Factors from Driver’s Perspective," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    18. Mendoza, Joan-Manuel F. & Sanyé-Mengual, Esther & Angrill, Sara & García-Lozano, Raúl & Feijoo, Gumersindo & Josa, Alejandro & Gabarrell, Xavier & Rieradevall, Joan, 2015. "Development of urban solar infrastructure to support low-carbon mobility," Energy Policy, Elsevier, vol. 85(C), pages 102-114.
    19. Masiero, Gilmar & Ogasavara, Mario Henrique & Jussani, Ailton Conde & Risso, Marcelo Luiz, 2017. "The global value chain of electric vehicles: A review of the Japanese, South Korean and Brazilian cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 290-296.
    20. Md Junaed Al Hossain & Md. Zakir Hasan & Md Hasanuzzaman & Md. Ziaur Rahman Khan & Mohammad Ahsan Habib, 2022. "Affordable Electric Three-Wheeler in Bangladesh: Prospects, Challenges, and Sustainable Solutions," Sustainability, MDPI, vol. 15(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:251:y:2019:i:c:65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.