IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v238y2019icp547-560.html
   My bibliography  Save this article

Sulfur dioxide pollution and energy justice in Northwestern China embodied in West-East Energy Transmission of China

Author

Listed:
  • Ling, Zaili
  • Huang, Tao
  • Li, Jixiang
  • Zhou, Sheng
  • Lian, Lulu
  • Wang, Jinxiang
  • Zhao, Yuan
  • Mao, Xiaoxuan
  • Gao, Hong
  • Ma, Jianmin

Abstract

Severe air pollution in China is primarily caused by heavy demands for energy, especially from fossil fuels. Having the majority of China’s energy resources, northwestern China played an increasingly significant role in China’s energy supply over the past two decades, but the associated environmental consequences and energy justice are almost unknown or ignored. Here we conduct extensive model simulations using a multi-regional input-output (MRIO) model to measure sulphur dioxide (SO2) emissions resulting from the interprovincial trade associated with the west-east energy transmission in China. We examine the environmental consequences using a coupled weather forecast–atmospheric chemistry model. We show that SO2 emissions from the virtual west-east energy transmission accounted for over 40% of total SO2 emissions in northwestern China in the 2000s. Accordingly, 35–52% of SO2 atmospheric concentrations in this region could be attributed to the virtual west-east energy transmission for the same period. At some of the large-scale national energy and chemical industry bases in northwestern China, SO2 concentrations induced by the energy supply due to the demand from eastern China exceeded 60%. A tagging technique was employed to identify the source-receptor relationship of SO2 emissions embodied in west-east energy transmission by estimating the sensitivity and efficiency of the energy demanding regions to energy and heavy industry products. The results discerned eastern China to be a major sensitive energy demand region causing SO2 emission from the energy and high energy consuming industries in northwestern China. We propose that the Chinese authorities should subsidize the environmental losses in northwestern China subject to the virtual west-east energy transmission to promote energy justice.

Suggested Citation

  • Ling, Zaili & Huang, Tao & Li, Jixiang & Zhou, Sheng & Lian, Lulu & Wang, Jinxiang & Zhao, Yuan & Mao, Xiaoxuan & Gao, Hong & Ma, Jianmin, 2019. "Sulfur dioxide pollution and energy justice in Northwestern China embodied in West-East Energy Transmission of China," Applied Energy, Elsevier, vol. 238(C), pages 547-560.
  • Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:547-560
    DOI: 10.1016/j.apenergy.2019.01.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919301370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haikun Wang & Yanxu Zhang & Hongyan Zhao & Xi Lu & Yanxia Zhang & Weimo Zhu & Chris P. Nielsen & Xin Li & Qiang Zhang & Jun Bi & Michael B. McElroy, 2017. "Trade-driven relocation of air pollution and health impacts in China," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    2. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    3. Sareen, Siddharth & Haarstad, Håvard, 2018. "Bridging socio-technical and justice aspects of sustainable energy transitions," Applied Energy, Elsevier, vol. 228(C), pages 624-632.
    4. Evensen, Darrick & Demski, Christina & Becker, Sarah & Pidgeon, Nick, 2018. "The relationship between justice and acceptance of energy transition costs in the UK," Applied Energy, Elsevier, vol. 222(C), pages 451-459.
    5. Chapman, Andrew J. & McLellan, Benjamin C. & Tezuka, Tetsuo, 2018. "Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways," Applied Energy, Elsevier, vol. 219(C), pages 187-198.
    6. Rocco, Matteo V. & Forcada Ferrer, Rafael J. & Colombo, Emanuela, 2018. "Understanding the energy metabolism of World economies through the joint use of Production- and Consumption-based energy accountings," Applied Energy, Elsevier, vol. 211(C), pages 590-603.
    7. Qiang Zhang & Xujia Jiang & Dan Tong & Steven J. Davis & Hongyan Zhao & Guannan Geng & Tong Feng & Bo Zheng & Zifeng Lu & David G. Streets & Ruijing Ni & Michael Brauer & Aaron van Donkelaar & Randall, 2017. "Transboundary health impacts of transported global air pollution and international trade," Nature, Nature, vol. 543(7647), pages 705-709, March.
    8. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    9. Guo, Ju’e & Zhang, Zengkai & Meng, Lei, 2012. "China’s provincial CO2 emissions embodied in international and interprovincial trade," Energy Policy, Elsevier, vol. 42(C), pages 486-497.
    10. Ou, Jiamin & Meng, Jing & Zheng, Junyu & Mi, Zhifu & Bian, Yahui & Yu, Xiang & Liu, Jingru & Guan, Dabo, 2017. "Demand-driven air pollutant emissions for a fast-developing region in China," Applied Energy, Elsevier, vol. 204(C), pages 131-142.
    11. Leying Wu & Zhangqi Zhong & Changxin Liu & Zheng Wang, 2017. "Examining PM 2.5 Emissions Embodied in China’s Supply Chain Using a Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    12. Tian, Xin & Chang, Miao & Lin, Chen & Tanikawa, Hiroki, 2014. "China’s carbon footprint: A regional perspective on the effect of transitions in consumption and production patterns," Applied Energy, Elsevier, vol. 123(C), pages 19-28.
    13. Meng, Bo & Xue, Jinjun & Feng, Kuishuang & Guan, Dabo & Fu, Xue, 2013. "China’s inter-regional spillover of carbon emissions and domestic supply chains," Energy Policy, Elsevier, vol. 61(C), pages 1305-1321.
    14. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    15. Guan, Dabo & Su, Xin & Zhang, Qiang & Peters, Glen P & Lei, Yu & He, Kebin & Liu, Zhu, 2014. "The socioeconomic drivers of China’s primary PM 2.5 emissions," Scholarly Articles 34253797, Harvard Kennedy School of Government.
    16. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    17. Owen, Anne & Scott, Kate & Barrett, John, 2018. "Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus," Applied Energy, Elsevier, vol. 210(C), pages 632-642.
    18. Sovacool, Benjamin K. & Burke, Matthew & Baker, Lucy & Kotikalapudi, Chaitanya Kumar & Wlokas, Holle, 2017. "New frontiers and conceptual frameworks for energy justice," Energy Policy, Elsevier, vol. 105(C), pages 677-691.
    19. Fernando Ascensão & Lenore Fahrig & Anthony P. Clevenger & Richard T. Corlett & Jochen A. G. Jaeger & William F. Laurance & Henrique M. Pereira, 2018. "Environmental challenges for the Belt and Road Initiative," Nature Sustainability, Nature, vol. 1(5), pages 206-209, May.
    20. Zhu, Junming & Ruth, Matthias, 2015. "Relocation or reallocation: Impacts of differentiated energy saving regulation on manufacturing industries in China," Ecological Economics, Elsevier, vol. 110(C), pages 119-133.
    21. Mundaca, Luis & Busch, Henner & Schwer, Sophie, 2018. "‘Successful’ low-carbon energy transitions at the community level? An energy justice perspective," Applied Energy, Elsevier, vol. 218(C), pages 292-303.
    22. Zhao, Xiaoli & Yin, Haitao, 2011. "Industrial relocation and energy consumption: Evidence from China," Energy Policy, Elsevier, vol. 39(5), pages 2944-2956, May.
    23. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    24. Liu, Qiaoling & Wang, Qi, 2015. "Reexamine SO2 emissions embodied in China's exports using multiregional input–output analysis," Ecological Economics, Elsevier, vol. 113(C), pages 39-50.
    25. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    26. Zhang, Zengkai & Lin, Jintai, 2018. "From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation," Applied Energy, Elsevier, vol. 211(C), pages 549-567.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    2. Chuai, Xiaowei & Gao, Runyi & Huang, Xianjin & Lu, Qinli & Zhao, Rongqin, 2021. "The embodied flow of built-up land in China's interregional trade and its implications for regional carbon balance," Ecological Economics, Elsevier, vol. 184(C).
    3. Junliang Yang & Haiyan Shan, 2019. "Identifying Driving Factors of Jiangsu’s Regional Sulfur Dioxide Emissions: A Generalized Divisia Index Method," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
    4. Wang, Xue-Chao & Yang, Lan & Wang, Yutao & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Ouyang, Xiao & Dong, Xiaobin, 2022. "Imbalances in virtual energy transfer network of China and carbon emissions neutrality implications," Energy, Elsevier, vol. 254(PA).
    5. Fan, Jinyang & Xie, Heping & Chen, Jie & Jiang, Deyi & Li, Cunbao & Ngaha Tiedeu, William & Ambre, Julien, 2020. "Preliminary feasibility analysis of a hybrid pumped-hydro energy storage system using abandoned coal mine goafs," Applied Energy, Elsevier, vol. 258(C).
    6. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    7. Best, Rohan, 2022. "Energy inequity variation across contexts," Applied Energy, Elsevier, vol. 309(C).
    8. Wang, Wei & Wu, Fengping & Li, Cunfang, 2021. "Relationship between cross-regional transfer and the environment based on the coal enterprises in China," Resources Policy, Elsevier, vol. 73(C).
    9. Zhang, Yuanjian & Gao, Bingzhao & Jiang, Jingjing & Liu, Chengyuan & Zhao, Dezong & Zhou, Quan & Chen, Zheng & Lei, Zhenzhen, 2023. "Cooperative power management for range extended electric vehicle based on internet of vehicles," Energy, Elsevier, vol. 273(C).
    10. Sun, Yunpeng & Wang, Jin & Wang, Xiuhui & Wei, Xinyu, 2023. "Achieving energy justice and common prosperity through green energy resources," Resources Policy, Elsevier, vol. 81(C).
    11. Guo, Shan & Zheng, Shupeng & Hu, Yunhao & Hong, Jingke & Wu, Xiaofang & Tang, Miaohan, 2019. "Embodied energy use in the global construction industry," Applied Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, B. & Qiao, H. & Chen, Z.M. & Chen, B., 2016. "Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis," Applied Energy, Elsevier, vol. 184(C), pages 1093-1105.
    2. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    3. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    4. Zhang, Bo & Yang, T.R. & Chen, B. & Sun, X.D., 2016. "China’s regional CH4 emissions: Characteristics, interregional transfer and mitigation policies," Applied Energy, Elsevier, vol. 184(C), pages 1184-1195.
    5. Zhang, Bo & Qiao, H. & Chen, B., 2015. "Embodied energy uses by China’s four municipalities: A study based on multi-regional input–output model," Ecological Modelling, Elsevier, vol. 318(C), pages 138-149.
    6. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    7. Li, Meng & Gao, Yuning & Meng, Bo & Yang, Zhusong, 2021. "Managing the mitigation: Analysis of the effectiveness of target-based policies on China's provincial carbon emission and transfer," Energy Policy, Elsevier, vol. 151(C).
    8. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    9. Hehua Zhao & Hongwen Chen & Lei He, 2022. "Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    10. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    11. Rui Huang & Klaus Hubacek & Kuishuang Feng & Xiaojie Li & Chao Zhang, 2018. "Re-Examining Embodied SO 2 and CO 2 Emissions in China," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    12. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    13. Liu, Yating & Fang, Delin & Chen, Bin, 2021. "Interregional spillover effect of PM2.5 emissions on Northeast China through the national supply chain," Applied Energy, Elsevier, vol. 303(C).
    14. Wenbin Shao & Fangyi Li & Zhaoyang Ye & Zhipeng Tang & Wu Xie & Yu Bai & Shanlin Yang, 2019. "Inter-Regional Spillover of Carbon Emissions and Employment in China: Is It Positive or Negative?," Sustainability, MDPI, vol. 11(13), pages 1-14, July.
    15. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    16. Upham, Dr Paul & Sovacool, Prof Benjamin & Ghosh, Dr Bipashyee, 2022. "Just transitions for industrial decarbonisation: A framework for innovation, participation, and justice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    18. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
    19. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    20. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, vol. 11(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:238:y:2019:i:c:p:547-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.