IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v181y2016icp38-53.html
   My bibliography  Save this article

Lifecycle optimized ethanol-gasoline blends for turbocharged engines

Author

Listed:
  • Zhang, Bo
  • Sarathy, S. Mani

Abstract

This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission of ethanol blended gasoline mixtures in future engines. The optimal fuel blend (lowest CO2 emitting fuel) is identified. A range of gasoline fuels is studied, containing different ethanol volume percentages (E0–E40), research octane numbers (RON, 92–105), and octane sensitivities (8.5–15.5). Sugarcane-based and cellulosic ethanol-blended gasolines are shown to be effective in reducing lifecycle CO2 emission, while corn-based ethanol is not as effective. A refinery simulation of production emission was utilized, and combined with vehicle fuel consumption modeling to determine the lifecycle CO2 emissions associated with ethanol-blended gasoline in turbocharged engines. The critical parameters studied, and related to blended fuel lifecycle CO2 emissions, are ethanol content, research octane number, and octane sensitivity. The lowest-emitting blended fuel had an ethanol content of 32vol%, RON of 105, and octane sensitivity of 15.5; resulting in a CO2 reduction of 7.1%, compared to the reference gasoline fuel and engine technology. The advantage of ethanol addition is greatest on a per unit basis at low concentrations. Finally, this study shows that engine-downsizing technology can yield an additional CO2 reduction of up to 25.5% in a two-stage downsized turbocharged engine burning the optimum sugarcane-based fuel blend. The social cost savings in the USA, from the CO2 reduction, is estimated to be as much as $187billion/year.

Suggested Citation

  • Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
  • Handle: RePEc:eee:appene:v:181:y:2016:i:c:p:38-53
    DOI: 10.1016/j.apenergy.2016.08.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916311394
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    2. Chollacoop, Nuwong & Saisirirat, Peerawat & Sukkasi, Sittha & Tongroon, Manida & Fukuda, Tuenjai & Fukuda, Atsushi & Nivitchanyong, Siriluck, 2013. "Potential of greenhouse gas emission reduction in Thai road transport by ethanol bus technology," Applied Energy, Elsevier, vol. 102(C), pages 112-123.
    3. Irimescu, Adrian, 2012. "Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol," Applied Energy, Elsevier, vol. 96(C), pages 477-483.
    4. Niven, Robert K., 2005. "Ethanol in gasoline: environmental impacts and sustainability review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 535-555, December.
    5. Salvo, A & Geiger, F, 2014. "Reduction in Local Ozone Levels in Urban São Paulo Due to a Shift from Ethanol to Gasoline Use," MPRA Paper 57868, University Library of Munich, Germany, revised 18 Feb 2014.
    6. ., 2013. "Meeting the climate change challenge," Chapters, in: Strategic Public Private Partnerships, chapter 10, pages 111-122, Edward Elgar Publishing.
    7. Hu, Zhiyuan & Fang, Fang & Ben, DaoFeng & Pu, Gengqiang & Wang, Chengtao, 2004. "Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in China," Applied Energy, Elsevier, vol. 78(3), pages 247-256, July.
    8. Cai, Hua & Hu, Xiaojun & Xu, Ming, 2013. "Impact of emerging clean vehicle system on water stress," Applied Energy, Elsevier, vol. 111(C), pages 644-651.
    9. Costagliola, M.A. & De Simio, L. & Iannaccone, S. & Prati, M.V., 2013. "Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends," Applied Energy, Elsevier, vol. 111(C), pages 1162-1171.
    10. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    11. Escobar, José C. & Lora, Electo S. & Venturini, Osvaldo J. & Yáñez, Edgar E. & Castillo, Edgar F. & Almazan, Oscar, 2009. "Biofuels: Environment, technology and food security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1275-1287, August.
    12. Frances C. Moore & Delavane B. Diaz, 2015. "Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(2), pages 127-131, February.
    13. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Zhao, Hua, 2016. "Performance and economic analysis of a direct injection spark ignition engine fueled with wet ethanol," Applied Energy, Elsevier, vol. 169(C), pages 230-239.
    14. Tian-Xiang Yue & Na Zhao & R. Ramsey & Chen-Liang Wang & Ze-Meng Fan & Chuan-Fa Chen & Yi-Min Lu & Bai-Lian Li, 2013. "Climate change trend in China, with improved accuracy," Climatic Change, Springer, vol. 120(1), pages 137-151, September.
    15. Leal, Manoel Regis L.V. & Horta Nogueira, Luiz A. & Cortez, Luis A.B., 2013. "Land demand for ethanol production," Applied Energy, Elsevier, vol. 102(C), pages 266-271.
    16. Capaz, Rafael Silva & Carvalho, Vanessa Silveira Barreto & Nogueira, Luiz Augusto Horta, 2013. "Impact of mechanization and previous burning reduction on GHG emissions of sugarcane harvesting operations in Brazil," Applied Energy, Elsevier, vol. 102(C), pages 220-228.
    17. Clairotte, M. & Adam, T.W. & Zardini, A.A. & Manfredi, U. & Martini, G. & Krasenbrink, A. & Vicet, A. & Tournié, E. & Astorga, C., 2013. "Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline," Applied Energy, Elsevier, vol. 102(C), pages 44-54.
    18. Hernandez, Marcel & Menchaca, Lizette & Mendoza, Alberto, 2014. "Fuel economy and emissions of light-duty vehicles fueled with ethanol–gasoline blends in a Mexican City," Renewable Energy, Elsevier, vol. 72(C), pages 236-242.
    19. Huang, Yuhan & Hong, Guang & Huang, Ronghua, 2015. "Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine," Applied Energy, Elsevier, vol. 160(C), pages 244-254.
    20. Silalertruksa, Thapat & Gheewala, Shabbir H. & Pongpat, Patcharaporn, 2015. "Sustainability assessment of sugarcane biorefinery and molasses ethanol production in Thailand using eco-efficiency indicator," Applied Energy, Elsevier, vol. 160(C), pages 603-609.
    21. Hulwan, Dattatray Bapu & Joshi, Satishchandra V., 2011. "Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content," Applied Energy, Elsevier, vol. 88(12), pages 5042-5055.
    22. Cho, Jaeho & Si, Woosung & Jang, Wonwook & Jin, Dongyoung & Myung, Cha-Lee & Park, Simsoo, 2015. "Impact of intermediate ethanol blends on particulate matter emission from a spark ignition direct injection (SIDI) engine," Applied Energy, Elsevier, vol. 160(C), pages 592-602.
    23. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    24. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    25. Frances C. Moore & Delavane B. Diaz, 2015. "Erratum: Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(3), pages 280-280, March.
    26. Wu, Xuesong & Daniel, Ritchie & Tian, Guohong & Xu, Hongming & Huang, Zuohua & Richardson, Dave, 2011. "Dual-injection: The flexible, bi-fuel concept for spark-ignition engines fuelled with various gasoline and biofuel blends," Applied Energy, Elsevier, vol. 88(7), pages 2305-2314, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badra, Jihad & AlRamadan, Abdullah S. & Sarathy, S. Mani, 2017. "Optimization of the octane response of gasoline/ethanol blends," Applied Energy, Elsevier, vol. 203(C), pages 778-793.
    2. de Salvo Junior, Orlando & Saraiva de Souza, Maria Tereza & Vaz de Almeida, Flávio G., 2021. "Implementation of new technologies for reducing fuel consumption of automobiles in Brazil according to the Brazilian Vehicle Labelling Programme," Energy, Elsevier, vol. 233(C).
    3. Shu, Jun & Fu, Jianqin & Ren, Chengqin & Liu, Jingping & Wang, Shuqian & Feng, Sha, 2020. "Numerical investigation on flow and heat transfer processes of novel methanol cracking device for internal combustion engine exhaust heat recovery," Energy, Elsevier, vol. 195(C).
    4. Shoki Kosai & Muku Yuasa & Eiji Yamasue, 2020. "Chronological Transition of Relationship between Intracity Lifecycle Transport Energy Efficiency and Population Density," Energies, MDPI, vol. 13(8), pages 1-15, April.
    5. Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
    6. Liu, Guibin & Ruan, Can & Li, Zilong & Huang, Guan & Zhou, Qiyan & Qian, Yong & Lu, Xingcai, 2020. "Investigation of engine performance for alcohol/kerosene blends as in spark-ignition aviation piston engine," Applied Energy, Elsevier, vol. 268(C).
    7. Liu, Qi & Xie, Mingke & Fu, Jianqin & Liu, Jingping & Deng, Banglin, 2021. "Cylinder steam injection (CSI) for internal combustion (IC) engine waste heat recovery (WHR) and its application on natural gas (NG) engine," Energy, Elsevier, vol. 214(C).
    8. Jhang, Syu-Ruei & Lin, Yuan-Chung & Chen, Kang-Shin & Lin, Sheng-Lun & Batterman, Stuart, 2020. "Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen," Energy, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    2. Wu, Bingqing & Sarker, Bhaba R. & Paudel, Krishna P., 2015. "Sustainable energy from biomass: Biomethane manufacturing plant location and distribution problem," Applied Energy, Elsevier, vol. 158(C), pages 597-608.
    3. Costagliola, M.A. & De Simio, L. & Iannaccone, S. & Prati, M.V., 2013. "Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends," Applied Energy, Elsevier, vol. 111(C), pages 1162-1171.
    4. Malça, João & Freire, Fausto, 2011. "Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 338-351, January.
    5. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Karavalakis, Georgios & Short, Daniel & Vu, Diep & Russell, Robert L. & Asa-Awuku, Akua & Jung, Heejung & Johnson, Kent C. & Durbin, Thomas D., 2015. "The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines," Energy, Elsevier, vol. 82(C), pages 168-179.
    7. Nguyen, Trung H. & Granger, Julien & Pandya, Deval & Paustian, Keith, 2019. "High-resolution multi-objective optimization of feedstock landscape design for hybrid first and second generation biorefineries," Applied Energy, Elsevier, vol. 238(C), pages 1484-1496.
    8. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    10. Balogh, P. & Bai, A. & Popp, J. & Huzsvai, L. & Jobbágy, P., 2015. "Internet-orientated Hungarian car drivers’ knowledge and attitudes towards biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 17-26.
    11. Clairotte, M. & Adam, T.W. & Zardini, A.A. & Manfredi, U. & Martini, G. & Krasenbrink, A. & Vicet, A. & Tournié, E. & Astorga, C., 2013. "Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline," Applied Energy, Elsevier, vol. 102(C), pages 44-54.
    12. Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
    13. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    14. Wei, Haiqiao & Feng, Dengquan & Shu, Gequn & Pan, Mingzhang & Guo, Yubin & Gao, Dongzhi & Li, Wei, 2014. "Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine," Applied Energy, Elsevier, vol. 132(C), pages 317-324.
    15. Liu, Kaimin & Li, Yangtao & Yang, Jing & Deng, Banglin & Feng, Renhua & Huang, Yanjun, 2018. "Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine," Applied Energy, Elsevier, vol. 212(C), pages 13-32.
    16. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    17. Badra, Jihad & AlRamadan, Abdullah S. & Sarathy, S. Mani, 2017. "Optimization of the octane response of gasoline/ethanol blends," Applied Energy, Elsevier, vol. 203(C), pages 778-793.
    18. Khatiwada, Dilip & Venkata, Bharadwaj K. & Silveira, Semida & Johnson, Francis X., 2016. "Energy and GHG balances of ethanol production from cane molasses in Indonesia," Applied Energy, Elsevier, vol. 164(C), pages 756-768.
    19. Feng, Renhua & Fu, Jianqin & Yang, Jing & Wang, Yi & Li, Yangtao & Deng, Banglin & Liu, Jingping & Zhang, Daming, 2015. "Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend," Renewable Energy, Elsevier, vol. 81(C), pages 113-122.
    20. Juan E. Tibaquirá & José I. Huertas & Sebastián Ospina & Luis F. Quirama & José E. Niño, 2018. "The Effect of Using Ethanol-Gasoline Blends on the Mechanical, Energy and Environmental Performance of In-Use Vehicles," Energies, MDPI, vol. 11(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:181:y:2016:i:c:p:38-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.