IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v146y2015icp397-408.html
   My bibliography  Save this article

Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration

Author

Listed:
  • Arbabzadeh, Maryam
  • Johnson, Jeremiah X.
  • De Kleine, Robert
  • Keoleian, Gregory A.

Abstract

Energy storage may serve as a solution to the integration challenges of high penetrations of wind, helping to reduce curtailment, provide system balancing services, and reduce emissions. This study determines the minimum cost configuration of vanadium redox flow batteries (VRFB), wind turbines, and natural gas reciprocating engines in an off-grid model. A life cycle assessment (LCA) model is developed to determine the system configuration needed to achieve a variety of CO2-eq emissions targets. The relationship between total system costs and life cycle emissions are used to optimize the generation mixes to achieve emissions targets at the least cost and determine when VRFBs are preferable over wind curtailment. Different greenhouse gas (GHG) emissions targets are defined for the off-grid system and the minimum cost resource configuration is determined to meet those targets. This approach determines when the use of VRFBs is more cost effective than wind curtailment in reaching GHG emissions targets. The research demonstrates that while incorporating energy storage consistently reduces life cycle carbon emissions, it is not cost effective to reduce curtailment except under very low emission targets (190g of CO2-eq/kWh and less for the examined system). This suggests that “overbuilding” wind is a more viable option to reduce life cycle emissions for all but the most ambitious carbon mitigation targets. The findings show that adding VRFB as energy storage could be economically preferable only when wind curtailment exceeds 66% for the examined system. The results were most sensitive to VRFB costs, natural gas upstream emissions (e.g. methane leakage), and wind capital cost.

Suggested Citation

  • Arbabzadeh, Maryam & Johnson, Jeremiah X. & De Kleine, Robert & Keoleian, Gregory A., 2015. "Vanadium redox flow batteries to reach greenhouse gas emissions targets in an off-grid configuration," Applied Energy, Elsevier, vol. 146(C), pages 397-408.
  • Handle: RePEc:eee:appene:v:146:y:2015:i:c:p:397-408
    DOI: 10.1016/j.apenergy.2015.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915001610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anagnostopoulos, J.S. & Papantonis, D.E., 2008. "Simulation and size optimization of a pumped–storage power plant for the recovery of wind-farms rejected energy," Renewable Energy, Elsevier, vol. 33(7), pages 1685-1694.
    2. Jeremiah X. Johnson & Colin A. McMillan & Gregory A. Keoleian, 2013. "Evaluation of Life Cycle Assessment Recycling Allocation Methods," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 700-711, October.
    3. Ibrahim, H. & Younès, R. & Basbous, T. & Ilinca, A. & Dimitrova, M., 2011. "Optimization of diesel engine performances for a hybrid wind–diesel system with compressed air energy storage," Energy, Elsevier, vol. 36(5), pages 3079-3091.
    4. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    5. Johnson, Jeremiah X. & De Kleine, Robert & Keoleian, Gregory A., 2014. "Assessment of energy storage for transmission-constrained wind," Applied Energy, Elsevier, vol. 124(C), pages 377-388.
    6. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    7. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    8. McManus, M.C., 2012. "Environmental consequences of the use of batteries in low carbon systems: The impact of battery production," Applied Energy, Elsevier, vol. 93(C), pages 288-295.
    9. Zahedi, A., 2011. "Maximizing solar PV energy penetration using energy storage technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 866-870, January.
    10. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    11. Ibrahim, H. & Younès, R. & Ilinca, A. & Dimitrova, M. & Perron, J., 2010. "Study and design of a hybrid wind-diesel-compressed air energy storage system for remote areas," Applied Energy, Elsevier, vol. 87(5), pages 1749-1762, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Novacheck, Joshua & Johnson, Jeremiah X., 2015. "The environmental and cost implications of solar energy preferences in Renewable Portfolio Standards," Energy Policy, Elsevier, vol. 86(C), pages 250-261.
    2. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Wei, L. & Zhao, T.S. & Xu, Q. & Zhou, X.L. & Zhang, Z.H., 2017. "In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries," Applied Energy, Elsevier, vol. 190(C), pages 1112-1118.
    4. Lin, Yashen & Johnson, Jeremiah X. & Mathieu, Johanna L., 2016. "Emissions impacts of using energy storage for power system reserves," Applied Energy, Elsevier, vol. 168(C), pages 444-456.
    5. Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
    6. Maryori C. Díaz-Ramírez & Victor J. Ferreira & Tatiana García-Armingol & Ana M. López-Sabirón & Germán Ferreira, 2020. "Battery Manufacturing Resource Assessment to Minimise Component Production Environmental Impacts," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    7. Stringer, Thomas & Joanis, Marcelin, 2023. "Decarbonizing Canada's remote microgrids," Energy, Elsevier, vol. 264(C).
    8. Daghi, Majid & Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Factor analysis based optimal storage planning in active distribution network considering different battery technologies," Applied Energy, Elsevier, vol. 183(C), pages 456-469.
    9. Duan, Z.N. & Qu, Z.G. & Wang, Q. & Wang, J.J., 2019. "Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance," Applied Energy, Elsevier, vol. 250(C), pages 1632-1640.
    10. Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Zhu, X.B., 2016. "Performance of a vanadium redox flow battery with a VANADion membrane," Applied Energy, Elsevier, vol. 180(C), pages 353-359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
    2. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    3. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    4. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    5. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    6. Colmenar-Santos, Antonio & Campíñez-Romero, Severo & Pérez-Molina, Clara & Castro-Gil, Manuel, 2012. "Profitability analysis of grid-connected photovoltaic facilities for household electricity self-sufficiency," Energy Policy, Elsevier, vol. 51(C), pages 749-764.
    7. Cole, Wesley & Frew, Bethany & Gagnon, Pieter & Reimers, Andrew & Zuboy, Jarett & Margolis, Robert, 2018. "Envisioning a low-cost solar future: Exploring the potential impact of Achieving the SunShot 2030 targets for photovoltaics," Energy, Elsevier, vol. 155(C), pages 690-704.
    8. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    9. Urbina, Antonio, 2014. "Solar electricity in a changing environment: The case of Spain," Renewable Energy, Elsevier, vol. 68(C), pages 264-269.
    10. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    11. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    12. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    13. Nunes, Pedro & Farias, Tiago & Brito, Miguel C., 2015. "Day charging electric vehicles with excess solar electricity for a sustainable energy system," Energy, Elsevier, vol. 80(C), pages 263-274.
    14. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    15. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    16. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    17. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    18. Wooyoung Jeon & Chul-Yong Lee, 2019. "Estimating the Cost of Solar Generation Uncertainty and the Impact of Collocated Energy Storage: The Case of Korea," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
    19. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "The role of conventional power plants in a grid fed mainly by PV and storage, and the largest shadow capacity requirement," Energy Policy, Elsevier, vol. 48(C), pages 479-486.
    20. Zack Norwood & Joel Goop & Mikael Odenberger, 2017. "The Future of the European Electricity Grid Is Bright: Cost Minimizing Optimization Shows Solar with Storage as Dominant Technologies to Meet European Emissions Targets to 2050," Energies, MDPI, vol. 10(12), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:146:y:2015:i:c:p:397-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.