IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp483-489.html
   My bibliography  Save this article

Optimizing the efficiency of anhydrous ethanol purification via regenerable molecular sieve

Author

Listed:
  • Chen, Wei-Cheng
  • Sheng, Chung-Teh
  • Liu, Yu-Cheng
  • Chen, Wei-Jen
  • Huang, Wen-Luh
  • Chang, Shih-Hsien
  • Chang, Wei-Che

Abstract

In response to the global energy development trend and greenhouse effects, bio-energy applications are gradually being taken seriously. Gasohol is an alternative fuel that consists of anhydrous ethanol (purity 99.3wt% or higher) blended with gasoline, which produces less air pollution than standard car fuels. A system was constructed for bio-ethanol production from molasses feedstock. The molasses was fermented and then distilled using a distillation tower, producing up to 90wt% ethanol concentration. This sample was further concentrated using 3A-type molecular sieves to adsorb water from the ethanol samples until saturated. The sieves were then regenerated for reuse via continuous heating by high-temperature nitrogen. The response surface methodology was applied to determine an optimized operational model for regeneration of molecular sieves. The results indicate that the cost of molecular sieve regeneration (unit energy yield was 0.283L/kWh) which can stand comparison with other purify methods. The optimal parameters were at a temperature of 193°C and a heating time of 7h. 40min. The results also demonstrated that a yield of 60L anhydrous ethanol required energy consumption of 212.1kWh.

Suggested Citation

  • Chen, Wei-Cheng & Sheng, Chung-Teh & Liu, Yu-Cheng & Chen, Wei-Jen & Huang, Wen-Luh & Chang, Shih-Hsien & Chang, Wei-Che, 2014. "Optimizing the efficiency of anhydrous ethanol purification via regenerable molecular sieve," Applied Energy, Elsevier, vol. 135(C), pages 483-489.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:483-489
    DOI: 10.1016/j.apenergy.2014.08.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914009350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Pimphan A. & Tews, Iva J. & Magnuson, Jon K. & Karagiosis, Sue A. & Jones, Susanne B., 2013. "Techno-economic analysis of corn stover fungal fermentation to ethanol," Applied Energy, Elsevier, vol. 111(C), pages 657-668.
    2. Dias, M.O.S. & Junqueira, T.L. & Jesus, C.D.F. & Rossell, C.E.V. & Maciel Filho, R. & Bonomi, A., 2012. "Improving bioethanol production – Comparison between extractive and low temperature fermentation," Applied Energy, Elsevier, vol. 98(C), pages 548-555.
    3. Bayraktar, Hakan, 2007. "Theoretical investigation of flame propagation process in an SI engine running on gasoline–ethanol blends," Renewable Energy, Elsevier, vol. 32(5), pages 758-771.
    4. Siqueira, Germano & Várnai, Anikó & Ferraz, André & Milagres, Adriane M.F., 2013. "Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite," Applied Energy, Elsevier, vol. 102(C), pages 399-402.
    5. Dias, Marina O.S. & Junqueira, Tassia L. & Cavalett, Otávio & Pavanello, Lucas G. & Cunha, Marcelo P. & Jesus, Charles D.F. & Maciel Filho, Rubens & Bonomi, Antonio, 2013. "Biorefineries for the production of first and second generation ethanol and electricity from sugarcane," Applied Energy, Elsevier, vol. 109(C), pages 72-78.
    6. Nguyen, Thu Lan T. & Gheewala, Shabbir H. & Garivait, Savitri, 2007. "Fossil energy savings and GHG mitigation potentials of ethanol as a gasoline substitute in Thailand," Energy Policy, Elsevier, vol. 35(10), pages 5195-5205, October.
    7. Peng, Huadong & Chen, Hongzhang & Qu, Yongshui & Li, Hongqiang & Xu, Jian, 2014. "Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH," Applied Energy, Elsevier, vol. 117(C), pages 142-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    2. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Zhao, Hua, 2016. "Performance and economic analysis of a direct injection spark ignition engine fueled with wet ethanol," Applied Energy, Elsevier, vol. 169(C), pages 230-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Curto-Risso, P.L. & Medina, A. & Calvo Hernández, A. & Guzmán-Vargas, L. & Angulo-Brown, F., 2011. "On cycle-to-cycle heat release variations in a simulated spark ignition heat engine," Applied Energy, Elsevier, vol. 88(5), pages 1557-1567, May.
    2. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.
    3. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    4. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    5. Leon, Juan A. & Palacios-Bereche, Reynaldo & Nebra, Silvia A., 2016. "Batch pervaporative fermentation with coupled membrane and its influence on energy consumption in permeate recovery and distillation stage," Energy, Elsevier, vol. 109(C), pages 77-91.
    6. Gomes, Michelle Garcia & Gurgel, Leandro Vinícius Alves & Baffi, Milla Alves & Pasquini, Daniel, 2020. "Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 157(C), pages 332-341.
    7. González-García, Sara & Luo, Lin & Moreira, Mª Teresa & Feijoo, Gumersindo & Huppes, Gjalt, 2009. "Life cycle assessment of flax shives derived second generation ethanol fueled automobiles in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1922-1933, October.
    8. Khatiwada, Dilip & Silveira, Semida, 2009. "Net energy balance of molasses based ethanol: The case of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2515-2524, December.
    9. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    10. Schneider, Willian Daniel Hahn & Fontana, Roselei Claudete & Baudel, Henrique Macedo & de Siqueira, Félix Gonçalves & Rencoret, Jorge & Gutiérrez, Ana & de Eugenio, Laura Isabel & Prieto, Alicia & Mar, 2020. "Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield," Applied Energy, Elsevier, vol. 262(C).
    11. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    12. Yang, Q. & Chen, G.Q., 2013. "Greenhouse gas emissions of corn–ethanol production in China," Ecological Modelling, Elsevier, vol. 252(C), pages 176-184.
    13. Singh, Shuchi & Khanna, Swati & Moholkar, Vijayanand S. & Goyal, Arun, 2014. "Screening and optimization of pretreatments for Parthenium hysterophorus as feedstock for alcoholic biofuels," Applied Energy, Elsevier, vol. 129(C), pages 195-206.
    14. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    16. Ntihuga, Jean Nepomuscene & Senn, Thomas & Gschwind, Peter & Kohlus, Reinhard, 2013. "An evaluation of different bioreactor configurations for continuous bio-ethanol production," Applied Energy, Elsevier, vol. 108(C), pages 194-201.
    17. Jessica Coria & Gunnar Köhlin & Jintao Xu, 2019. "On the Use of Market-Based Instruments to Reduce Air Pollution in Asia," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    18. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. González-García, Sara & Moreira, M. Teresa & Feijoo, Gumersindo, 2010. "Comparative environmental performance of lignocellulosic ethanol from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2077-2085, September.
    20. Kim, Jieun & Kim, Ki-Hyun & Kwon, Eilhann E., 2016. "Enhanced thermal cracking of VOCs evolved from the thermal degradation of lignin using CO2," Energy, Elsevier, vol. 100(C), pages 51-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:483-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.