IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v101y2013icp776-796.html
   My bibliography  Save this article

Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes

Author

Listed:
  • Pratt, Joseph W.
  • Klebanoff, Leonard E.
  • Munoz-Ramos, Karina
  • Akhil, Abbas A.
  • Curgus, Dita B.
  • Schenkman, Benjamin L.

Abstract

Deployed on a commercial airplane, proton exchange membrane (PEM) fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they could offer a performance advantage for the airplane when using today’s off-the-shelf technology. We also examine the effects of the fuel cell system on airplane performance with (1) different electrical loads, (2) different locations on the airplane, and (3) expected advances in fuel cell and hydrogen storage technologies.

Suggested Citation

  • Pratt, Joseph W. & Klebanoff, Leonard E. & Munoz-Ramos, Karina & Akhil, Abbas A. & Curgus, Dita B. & Schenkman, Benjamin L., 2013. "Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes," Applied Energy, Elsevier, vol. 101(C), pages 776-796.
  • Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:776-796
    DOI: 10.1016/j.apenergy.2012.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912005727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    2. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    3. Peters, R. & Samsun, R.C., 2013. "Evaluation of multifunctional fuel cell systems in aviation using a multistep process analysis methodology," Applied Energy, Elsevier, vol. 111(C), pages 46-63.
    4. Wan, Zhongmin & Liu, Jing & Luo, Zhiping & Tu, Zhengkai & Liu, Zhichun & Liu, Wei, 2013. "Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 104(C), pages 751-757.
    5. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2020. "A least-squares support vector machine method for modeling transient voltage in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 271(C).
    6. Chen, Yong-Song & Yang, Chih-Wei & Lee, Jiunn-Yih, 2014. "Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration," Applied Energy, Elsevier, vol. 113(C), pages 1519-1524.
    7. Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2023. "Modeling and performance analysis of a pre-cooling and power generation system based on the supercritical CO2 Brayton cycle on turbine-based combined cycle engines," Energy, Elsevier, vol. 284(C).
    8. Park, Jaeman & Oh, Hwanyeong & Lee, Yoo Il & Min, Kyoungdoug & Lee, Eunsook & Jyoung, Jy-Young, 2016. "Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance," Applied Energy, Elsevier, vol. 171(C), pages 200-212.
    9. Park, Junhwi & Lee, Donguk & Lim, Daejin & Yee, Kwanjung, 2022. "A refined sizing method of fuel cell-battery hybrid system for eVTOL aircraft," Applied Energy, Elsevier, vol. 328(C).
    10. Pessot, Alexandra & Turpin, Christophe & Jaafar, Amine & Soyez, Emilie & Rallières, Olivier & Gager, Guillaume & d’Arbigny, Julien, 2019. "Contribution to the modelling of a low temperature PEM fuel cell in aeronautical conditions by design of experiments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 179-198.
    11. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
    12. Zizhe Dong & Yuwen Liu & Yanzhou Qin, 2022. "Coupled FEM and CFD Modeling of Structure Deformation and Performance of PEMFC Considering the Effects of Membrane Water Content," Energies, MDPI, vol. 15(15), pages 1-19, July.
    13. Donateo, Teresa & Ficarella, Antonio & Spedicato, Luigi & Arista, Alessandro & Ferraro, Marco, 2017. "A new approach to calculating endurance in electric flight and comparing fuel cells and batteries," Applied Energy, Elsevier, vol. 187(C), pages 807-819.
    14. Thomas Jarry & Fabien Lacressonnière & Amine Jaafar & Christophe Turpin & Marion Scohy, 2021. "Modeling and Sizing of a Fuel Cell—Lithium-Ion Battery Direct Hybridization System for Aeronautical Application," Energies, MDPI, vol. 14(22), pages 1-16, November.
    15. Li, Guozhen, 2023. "The Hydrogen Fuel Pathway for Air Transportation," Institute of Transportation Studies, Working Paper Series qt3sh5x1vk, Institute of Transportation Studies, UC Davis.
    16. Wu, Zhen & Yang, Fusheng & Zhang, Zaoxiao & Bao, Zewei, 2014. "Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design," Applied Energy, Elsevier, vol. 130(C), pages 712-722.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:101:y:2013:i:c:p:776-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.