IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp46-63.html
   My bibliography  Save this article

Evaluation of multifunctional fuel cell systems in aviation using a multistep process analysis methodology

Author

Listed:
  • Peters, R.
  • Samsun, R.C.

Abstract

This paper evaluates fuel cell technologies for multifunctional use in aircraft. In addition to electrical system efficiency, both water production and the availability of gases for tank inerting must be considered for this specific application. A multistep process analysis methodology is implemented here to select the most appropriate fuel cell system configuration. After introducing specifications for avionic fuel cell systems, theoretical aspects are discussed. This is followed by a stepwise process analysis introducing relevant parameters with the aid of statistical tools. A strategic evaluation then considers fuel issues. The evaluation as a whole shows that hydrogen-based systems are more advantageous in terms of achieving high efficiencies with high net water production rates. Considering volume and mass balances, this technology is preferable for short-range missions. The evaluation also shows that kerosene-based HT-PEFC systems are a better choice for medium- to long-range missions.

Suggested Citation

  • Peters, R. & Samsun, R.C., 2013. "Evaluation of multifunctional fuel cell systems in aviation using a multistep process analysis methodology," Applied Energy, Elsevier, vol. 111(C), pages 46-63.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:46-63
    DOI: 10.1016/j.apenergy.2013.04.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Amy & Davis, Ryan & Starbuck, Meghan & Ben-Amotz, Ami & Pate, Ron & Pienkos, Philip T., 2011. "Comparative cost analysis of algal oil production for biofuels," Energy, Elsevier, vol. 36(8), pages 5169-5179.
    2. Pratt, Joseph W. & Klebanoff, Leonard E. & Munoz-Ramos, Karina & Akhil, Abbas A. & Curgus, Dita B. & Schenkman, Benjamin L., 2013. "Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes," Applied Energy, Elsevier, vol. 101(C), pages 776-796.
    3. Krober, Mathias & Hank, Klaus & Heinrich, Jurgen & Wagner, Peter, 2008. "Ermittlung Der Wirtschaftlichkeit Des Energieholzanbaus In Kurzumtriebsplantagen – Risikoanalyse Mit Hilfe Der Monte-Carlo-Simulation," 48th Annual Conference, Bonn, Germany, September 24-26, 2008 52658, German Association of Agricultural Economists (GEWISOLA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Besseris, George J., 2014. "Using qualimetric engineering and extremal analysis to optimize a proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 128(C), pages 15-26.
    2. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Meißner, Jan & Pasel, Joachim & Peters, Ralf, 2020. "Reforming of diesel and jet fuel for fuel cells on a systems level: Steady-state and transient operation," Applied Energy, Elsevier, vol. 279(C).
    3. Yu, Xiao & Sandhu, Navjot S. & Yang, Zhenyi & Zheng, Ming, 2020. "Suitability of energy sources for automotive application – A review," Applied Energy, Elsevier, vol. 271(C).
    4. Ramírez-Díaz, Gabriel & Nadal-Mora, Vicente & Piechocki, Joaquín, 2015. "Descriptive analysis of viability of fuel saving in commercial aircraft through the application of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 138-152.
    5. Goldberg, C. & Nalianda, D. & Sethi, V. & Pilidis, P. & Singh, R. & Kyprianidis, K., 2018. "Assessment of an energy-efficient aircraft concept from a techno-economic perspective," Applied Energy, Elsevier, vol. 221(C), pages 229-238.
    6. Samsun, Remzi Can & Prawitz, Matthias & Tschauder, Andreas & Pasel, Joachim & Pfeifer, Peter & Peters, Ralf & Stolten, Detlef, 2018. "An integrated diesel fuel processing system with thermal start-up for fuel cells," Applied Energy, Elsevier, vol. 226(C), pages 145-159.
    7. Donateo, Teresa & Ficarella, Antonio & Spedicato, Luigi & Arista, Alessandro & Ferraro, Marco, 2017. "A new approach to calculating endurance in electric flight and comparing fuel cells and batteries," Applied Energy, Elsevier, vol. 187(C), pages 807-819.
    8. Pasel, Joachim & Samsun, Remzi Can & Tschauder, Andreas & Peters, Ralf & Stolten, Detlef, 2017. "Advances in autothermal reformer design," Applied Energy, Elsevier, vol. 198(C), pages 88-98.
    9. Pachauri, Rupendra Kumar & Chauhan, Yogesh K., 2015. "A study, analysis and power management schemes for fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1301-1319.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    2. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    3. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    4. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    5. Raslavičius, Laurencas & Semenov, Vladimir G. & Chernova, Nadezhda I. & Keršys, Artūras & Kopeyka, Aleksandr K., 2014. "Producing transportation fuels from algae: In search of synergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 133-142.
    6. Haase, Rachel & Bielicki, Jeffrey & Kuzma, Jennifer, 2013. "Innovation in emerging energy technologies: A case study analysis to inform the path forward for algal biofuels," Energy Policy, Elsevier, vol. 61(C), pages 1595-1607.
    7. Esakkimuthu, Sivakumar & Krishnamurthy, Venkatesan & Wang, Shuang & El-Fatah Abomohra, Abd & Shanmugam, Sabarathinam & Ramakrishnan, Sankar Ganesh & Subrmaniam, Sadhasivam & K, Swaminathan, 2019. "Simultaneous induction of biomass and lipid production in Tetradesmus obliquus BPL16 through polysorbate supplementation," Renewable Energy, Elsevier, vol. 140(C), pages 807-815.
    8. Andre DuPont, 2013. "Best practices for the sustainable production of algae-based biofuel in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 97-111, January.
    9. Li, Guozhen, 2023. "The Hydrogen Fuel Pathway for Air Transportation," Institute of Transportation Studies, Working Paper Series qt3sh5x1vk, Institute of Transportation Studies, UC Davis.
    10. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    11. Pessot, Alexandra & Turpin, Christophe & Jaafar, Amine & Soyez, Emilie & Rallières, Olivier & Gager, Guillaume & d’Arbigny, Julien, 2019. "Contribution to the modelling of a low temperature PEM fuel cell in aeronautical conditions by design of experiments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 179-198.
    12. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
    13. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    14. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2020. "A least-squares support vector machine method for modeling transient voltage in polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 271(C).
    15. Beal, C.M. & Hebner, R.E. & Webber, M.E., 2012. "Thermodynamic analysis of algal biocrude production," Energy, Elsevier, vol. 44(1), pages 925-943.
    16. Judd, S.J. & Al Momani, F.A.O. & Znad, H. & Al Ketife, A.M.D., 2017. "The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 379-387.
    17. Thomas Jarry & Fabien Lacressonnière & Amine Jaafar & Christophe Turpin & Marion Scohy, 2021. "Modeling and Sizing of a Fuel Cell—Lithium-Ion Battery Direct Hybridization System for Aeronautical Application," Energies, MDPI, vol. 14(22), pages 1-16, November.
    18. Ramos Tercero, Elia Armandina & Domenicali, Giacomo & Bertucco, Alberto, 2014. "Autotrophic production of biodiesel from microalgae: An updated process and economic analysis," Energy, Elsevier, vol. 76(C), pages 807-815.
    19. Nienhueser, Ian Andrew & Qiu, Yueming, 2016. "Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study," Applied Energy, Elsevier, vol. 180(C), pages 256-268.
    20. Otter, Verena & Deutsch, Maximilian, 2023. "Did policy lose sight of the wood for the trees? An UTAUT-based partial least squares estimation of farmers acceptance of innovative sustainable land use systems," Land Use Policy, Elsevier, vol. 126(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:46-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.