IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7655-d680186.html
   My bibliography  Save this article

Modeling and Sizing of a Fuel Cell—Lithium-Ion Battery Direct Hybridization System for Aeronautical Application

Author

Listed:
  • Thomas Jarry

    (LAPLACE—Laboratoire Plasma et Conversion d’énergie Université de Toulouse, CNRS—Centre National de la Recherche Scientifique, INPT—Institut National Polytechnique de Toulouse, UPS—Université Paul Sabatier, F-31077 Toulouse, France)

  • Fabien Lacressonnière

    (LAPLACE—Laboratoire Plasma et Conversion d’énergie Université de Toulouse, CNRS—Centre National de la Recherche Scientifique, INPT—Institut National Polytechnique de Toulouse, UPS—Université Paul Sabatier, F-31077 Toulouse, France)

  • Amine Jaafar

    (LAPLACE—Laboratoire Plasma et Conversion d’énergie Université de Toulouse, CNRS—Centre National de la Recherche Scientifique, INPT—Institut National Polytechnique de Toulouse, UPS—Université Paul Sabatier, F-31077 Toulouse, France)

  • Christophe Turpin

    (LAPLACE—Laboratoire Plasma et Conversion d’énergie Université de Toulouse, CNRS—Centre National de la Recherche Scientifique, INPT—Institut National Polytechnique de Toulouse, UPS—Université Paul Sabatier, F-31077 Toulouse, France)

  • Marion Scohy

    (Safran Power Units, F-31019 Toulouse, France)

Abstract

Nowadays, many aircraft manufacturers are working on new airplanes to reduce the environmental footprint and therefore meet greenhouse gas reduction targets. The concept of more electric aircraft is one of the solutions to achieve this goal. For this aircraft architecture, several electrical devices are used in order to supply propulsive and non-propulsive functions. This paper focuses on the sizing of a direct hybridization system to supply a non-propulsive function in an aircraft. It is composed of a High-Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC) and a lithium-ion (Li-ion) battery. This sizing is based on a static model of each storage device. The accuracy of these models is compared with dynamic models during a simulation for an aeronautical mission. Static models are implemented in a genetic algorithm to achieve two goals: on the one hand, satisfy the mission profile, and on the other hand, minimize the mass of the system. Other criteria, such as battery and fuel cell aging estimation, are considered. The obtained results show that the direct hybridization system allows protecting the fuel cell against an accelerated aging.

Suggested Citation

  • Thomas Jarry & Fabien Lacressonnière & Amine Jaafar & Christophe Turpin & Marion Scohy, 2021. "Modeling and Sizing of a Fuel Cell—Lithium-Ion Battery Direct Hybridization System for Aeronautical Application," Energies, MDPI, vol. 14(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7655-:d:680186
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pratt, Joseph W. & Klebanoff, Leonard E. & Munoz-Ramos, Karina & Akhil, Abbas A. & Curgus, Dita B. & Schenkman, Benjamin L., 2013. "Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes," Applied Energy, Elsevier, vol. 101(C), pages 776-796.
    2. Chen, Hui & Zhang, Zehui & Guan, Cong & Gao, Haibo, 2020. "Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship," Energy, Elsevier, vol. 197(C).
    3. Hannan, M.A. & Hoque, M.M. & Mohamed, A. & Ayob, A., 2017. "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 771-789.
    4. Di Trolio, P. & Di Giorgio, P. & Genovese, M. & Frasci, E. & Minutillo, M., 2020. "A hybrid power-unit based on a passive fuel cell/battery system for lightweight vehicles," Applied Energy, Elsevier, vol. 279(C).
    5. Lee, Sang C. & Kwon, Osung & Thomas, Sobi & Park, Sam & Choi, Gyeung-Ho, 2014. "Graphical and mathematical analysis of fuel cell/battery passive hybridization with K factors," Applied Energy, Elsevier, vol. 114(C), pages 135-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    4. Jiansong Li & Jiyun Zhao & Xiaochun Zhang, 2020. "A Novel Energy Recovery System Integrating Flywheel and Flow Regeneration for a Hydraulic Excavator Boom System," Energies, MDPI, vol. 13(2), pages 1-25, January.
    5. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    6. Liu, Xuan & Xue, Jilai, 2019. "The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries," Energy, Elsevier, vol. 189(C).
    7. Horn, Michael & MacLeod, Jennifer & Liu, Meinan & Webb, Jeremy & Motta, Nunzio, 2019. "Supercapacitors: A new source of power for electric cars?," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 93-103.
    8. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    11. Özbek, Emre & Yalin, Gorkem & Ekici, Selcuk & Karakoc, T. Hikmet, 2020. "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy, Elsevier, vol. 213(C).
    12. Jong-Wook Kim & Heungju Ahn & Hyeon Cheol Seo & Sang Cheol Lee, 2022. "Optimization of Solar/Fuel Cell Hybrid Energy System Using the Combinatorial Dynamic Encoding Algorithm for Searches (cDEAS)," Energies, MDPI, vol. 15(8), pages 1-15, April.
    13. de Wildt, T.E. & Chappin, E.J.L. & van de Kaa, G. & Herder, P.M. & van de Poel, I.R., 2019. "Conflicting values in the smart electricity grid a comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 184-196.
    14. Xie, Peilin & Tan, Sen & Bazmohammadi, Najmeh & Guerrero, Josep. M. & Vasquez, Juan. C. & Alcala, Jose Matas & Carreño, Jorge El Mariachet, 2022. "A distributed real-time power management scheme for shipboard zonal multi-microgrid system," Applied Energy, Elsevier, vol. 317(C).
    15. Li, Guozhen, 2023. "The Hydrogen Fuel Pathway for Air Transportation," Institute of Transportation Studies, Working Paper Series qt3sh5x1vk, Institute of Transportation Studies, UC Davis.
    16. Pinthurat, Watcharakorn & Hredzak, Branislav, 2021. "Fully decentralized control strategy for heterogeneous energy storage systems distributed in islanded DC datacentre microgrid," Energy, Elsevier, vol. 231(C).
    17. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    18. Goh, Taedong & Park, Minjun & Seo, Minhwan & Kim, Jun Gu & Kim, Sang Woo, 2018. "Successive-approximation algorithm for estimating capacity of Li-ion batteries," Energy, Elsevier, vol. 159(C), pages 61-73.
    19. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
    20. Han, Xiaojuan & Wang, Zuran & Wei, Zixuan, 2021. "A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion," Applied Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7655-:d:680186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.