IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i5p875-882.html
   My bibliography  Save this article

Estimation of irrigation return flow from paddy fields considering the soil moisture

Author

Listed:
  • Kim, H.K.
  • Jang, T.I.
  • Im, S.J.
  • Park, S.W.

Abstract

The objective of this study was to estimate irrigation return flow in irrigated paddy fields considering the soil moisture. The proposed model was applied to examine its feasibility with regard to the growing period of rice. Simulation results showed a good agreement between the observed and simulated values: root mean square error (RMSE) of 6.05-7.27mmday-1, coefficient of determination (R2) of 0.72-0.73, and coefficient of efficiency (E) of 0.54-0.55. The estimated average annual irrigation return flow during the period from 1998 to 2001 was 306.2mm, which was approximately 25.7% of the annual irrigation amounts. Of this annual irrigation return flow, 14.1% was attributable to quick and 11.6% to delayed return flow. These results indicate that considerable amounts of irrigation water in the paddy fields were returned to streams and canals by surface runoff and groundwater discharge. The modeling assessment method proposed in this study can be used to manage agriculture water and estimate irrigation return flow under different hydrological and water management conditions.

Suggested Citation

  • Kim, H.K. & Jang, T.I. & Im, S.J. & Park, S.W., 2009. "Estimation of irrigation return flow from paddy fields considering the soil moisture," Agricultural Water Management, Elsevier, vol. 96(5), pages 875-882, May.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:5:p:875-882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00313-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Odhiambo, L. O. & Murty, V. V. N., 1996. "Modeling water balance components in relation to field layout in lowland paddy fields. II: Model application," Agricultural Water Management, Elsevier, vol. 30(2), pages 201-216, April.
    2. Boldt, Alan L. & Eisenhauer, Dean E. & L. Martin, Derrel & Wilmes, Gary J., 1999. "Water conservation practices for a river valley irrigated with groundwater," Agricultural Water Management, Elsevier, vol. 38(3), pages 235-256, January.
    3. Reshmidevi, T.V. & Jana, R. & Eldho, T.I., 2008. "Geospatial estimation of soil moisture in rain-fed paddy fields using SCS-CN-based model," Agricultural Water Management, Elsevier, vol. 95(4), pages 447-457, April.
    4. Li, Y. H. & Cui, Y. L., 1996. "Real-time forecasting of irrigation water requirements of paddy fields," Agricultural Water Management, Elsevier, vol. 31(3), pages 185-193, October.
    5. Odhiambo, L. O. & Murty, V. V. N., 1996. "Modeling water balance components in relation to field layout in lowland paddy fields. I. Model development," Agricultural Water Management, Elsevier, vol. 30(2), pages 185-199, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jang, T.I. & Kim, H.K. & Seong, C.H. & Lee, E.J. & Park, S.W., 2012. "Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 104(C), pages 235-243.
    2. Naghedifar, Seyed Mohammadreza & Ziaei, Ali Naghi & Ansari, Hossein, 2018. "Simulation of irrigation return flow from a Triticale farm under sprinkler and furrow irrigation systems using experimental data: A case study in arid region," Agricultural Water Management, Elsevier, vol. 210(C), pages 185-197.
    3. Liu, Wei & Fu, Qiang & Meng, Jun & Li, Tianxiao & Cheng, Kun, 2019. "Simulation and analysis of return flow at the field scale in the northern rice irrigation area of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Kovacs, Kent & Tran, Dat Q., 2023. "Irrigation choice through water supply augmentation in the presence of climate risk and uncertainty," 2023 Annual Meeting, July 23-25, Washington D.C. 335432, Agricultural and Applied Economics Association.
    5. Jang, T.I. & Kim, H.K. & Im, S.J. & Park, S.W., 2010. "Simulations of storm hydrographs in a mixed-landuse watershed using a modified TR-20 model," Agricultural Water Management, Elsevier, vol. 97(2), pages 201-207, February.
    6. Gordon, Beatrice L. & Paige, Ginger B. & Miller, Scott N. & Claes, Niels & Parsekian, Andrew D., 2020. "Field scale quantification indicates potential for variability in return flows from flood irrigation in the high altitude western US," Agricultural Water Management, Elsevier, vol. 232(C).
    7. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    8. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    9. Antonopoulos, Vassilis Z., 2010. "Modelling of water and nitrogen balances in the ponded water and soil profile of rice fields in Northern Greece," Agricultural Water Management, Elsevier, vol. 98(2), pages 321-330, December.
    10. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    11. Xuezhi Tan & Dongguo Shao & Wenquan Gu, 2018. "Improving Water Reuse in Paddy Field Districts with Cascaded On-farm Ponds using Hydrologic Model Simulations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1849-1865, March.
    12. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    13. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.
    14. Kang, Mingoo & Park, Seungwoo, 2014. "Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations," Agricultural Water Management, Elsevier, vol. 143(C), pages 131-141.
    15. Tulip, Shibli Sadik & Siddik, Md Sifat & Islam, Md. Nazrul & Rahman, Atikur & Torabi Haghighi, Ali & Mustafa, Syed Md Touhidul, 2022. "The impact of irrigation return flow on seasonal groundwater recharge in northwestern Bangladesh," Agricultural Water Management, Elsevier, vol. 266(C).
    16. Kim, Jihye & Kim, Hakkwan & Kim, Sinae & Jang, Taeil & Jun, Sang-Min & Hwang, Soonho & Song, Jung-Hun & Kang, Moon-Seong, 2022. "Development of a simulation method for paddy fields based on surface FTABLE of hydrological simulation program–FORTRAN," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hazrat Ali, Md. & Teang Shui, Lee & Chee Yan, Kwok & Eloubaidy, Aziz F. & Foong, K. C., 2000. "Modeling water balance components and irrigation efficiencies in relation to water requirements for double-cropping systems," Agricultural Water Management, Elsevier, vol. 46(2), pages 167-182, December.
    2. Tsubo, M. & Fukai, S. & Tuong, T.P. & Ouk, M., 2007. "A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence," Ecological Modelling, Elsevier, vol. 204(3), pages 503-515.
    3. George, Biju A. & Raghuwanshi, N. S. & Singh, R., 2004. "Development and testing of a GIS integrated irrigation scheduling model," Agricultural Water Management, Elsevier, vol. 66(3), pages 221-237, May.
    4. Yoshinaga, Ikuo & Miura, Asa & Hitomi, Tadayoshi & Hamada, Koji & Shiratani, Eisaku, 2007. "Runoff nitrogen from a large sized paddy field during a crop period," Agricultural Water Management, Elsevier, vol. 87(2), pages 217-222, January.
    5. Shu Chen & Dongguo Shao & Xudong Li & Caixiu Lei, 2016. "Simulation-Optimization Modeling of Conjunctive Operation of Reservoirs and Ponds for Irrigation of Multiple Crops Using an Improved Artificial Bee Colony Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2887-2905, July.
    6. Jang, T.I. & Kim, H.K. & Seong, C.H. & Lee, E.J. & Park, S.W., 2012. "Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 104(C), pages 235-243.
    7. Kim, Jihye & Kim, Hakkwan & Kim, Sinae & Jang, Taeil & Jun, Sang-Min & Hwang, Soonho & Song, Jung-Hun & Kang, Moon-Seong, 2022. "Development of a simulation method for paddy fields based on surface FTABLE of hydrological simulation program–FORTRAN," Agricultural Water Management, Elsevier, vol. 271(C).
    8. Panigrahi, B. & Panda, S. N. & Mull, R., 2001. "Simulation of water harvesting potential in rainfed ricelands using water balance model," Agricultural Systems, Elsevier, vol. 69(3), pages 165-182, September.
    9. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    10. Odhiambo, L. O. & Murty, V. V. N., 1996. "Modeling water balance components in relation to field layout in lowland paddy fields. II: Model application," Agricultural Water Management, Elsevier, vol. 30(2), pages 201-216, April.
    11. Loeve, R. & Hong Lin & Dong Bin & Mao, G. & Chen, C. D. & Dawe, D. & Barker, R., 2003. "Long term trends in agricultural water productivity and intersectoral water allocations in Zhanghe, Hubei, China and in Kaifeng, Henan, China," IWMI Books, Reports H033358, International Water Management Institute.
    12. Gordon, Beatrice L. & Paige, Ginger B. & Miller, Scott N. & Claes, Niels & Parsekian, Andrew D., 2020. "Field scale quantification indicates potential for variability in return flows from flood irrigation in the high altitude western US," Agricultural Water Management, Elsevier, vol. 232(C).
    13. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    14. Hamideh Noory & Mona Deyhool & Farhad Mirzaei, 2019. "A Simulation-Optimization Model for Conjunctive Use of Canal and Pond in Irrigating Paddy Fields," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1053-1068, February.
    15. Shen, Z.Y. & Gong, Y.W. & Li, Y.H. & Hong, Q. & Xu, L. & Liu, R.M., 2009. "A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 96(10), pages 1435-1442, October.
    16. Reshmidevi, T.V. & Eldho, T.I. & Jana, R., 2009. "A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds," Agricultural Systems, Elsevier, vol. 101(1-2), pages 101-109, June.
    17. Traore, Seydou & Luo, Yufeng & Fipps, Guy, 2016. "Deployment of artificial neural network for short-term forecasting of evapotranspiration using public weather forecast restricted messages," Agricultural Water Management, Elsevier, vol. 163(C), pages 363-379.
    18. Odhiambo, L. O. & Murty, V. V. N., 1996. "Modeling water balance components in relation to field layout in lowland paddy fields. I. Model development," Agricultural Water Management, Elsevier, vol. 30(2), pages 185-199, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:5:p:875-882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.