IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v104y2012icp235-243.html
   My bibliography  Save this article

Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture

Author

Listed:
  • Jang, T.I.
  • Kim, H.K.
  • Seong, C.H.
  • Lee, E.J.
  • Park, S.W.

Abstract

An experimental field study was performed during the growing season to assess water and nutrient balances in a paddy field over a 3-year period. The plots were separated according to irrigation water: groundwater (TR#1), wastewater (TR#2), and filtered wastewater with ultraviolet (UV) treatment (TR#3). The hydrology and water quality of rainfall, irrigation, surface water, and infiltration were monitored throughout the crop stages. More than half of the total water inflow of about 1840mm in each treatment was contributed by precipitation and the remainder by irrigation. The water balance analysis indicated that approximately 13% of the total outflow was lost by surface drainage, 30% was consumed by plant uptake, and 57% was lost by evapotranspiration and infiltration. The nitrogen (N) levels in the irrigation water in the mass inputs for TR#1 and TR#3 were 22% and 49%, respectively, while the output balances in the drainage water for TR#1 and TR#3 averaged 2% and 6%, respectively. The N in the crop harvest for TR#1 and TR#3 occupied 59.62 and 121.35kgha−1, respectively. The N in the fertilizer comprised a large proportion of the N in TR#1 while the N in the irrigation water and fertilizer were the major inputs in TR#3. The major P input was fertilizer in TR#3, and crop harvest was a main output in the P balance. In contrast, surface drainage and infiltration were relatively small components, due to the high drainage outlet height. The difference between inputs and crop harvest shows that it is possible to improve water quality by reducing the fertilization rates in paddy fields irrigated with reclaimed wastewater.

Suggested Citation

  • Jang, T.I. & Kim, H.K. & Seong, C.H. & Lee, E.J. & Park, S.W., 2012. "Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 104(C), pages 235-243.
  • Handle: RePEc:eee:agiwat:v:104:y:2012:i:c:p:235-243
    DOI: 10.1016/j.agwat.2011.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741100357X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, H.K. & Jang, T.I. & Im, S.J. & Park, S.W., 2009. "Estimation of irrigation return flow from paddy fields considering the soil moisture," Agricultural Water Management, Elsevier, vol. 96(5), pages 875-882, May.
    2. Odhiambo, L. O. & Murty, V. V. N., 1996. "Modeling water balance components in relation to field layout in lowland paddy fields. II: Model application," Agricultural Water Management, Elsevier, vol. 30(2), pages 201-216, April.
    3. Feng, Y. W. & Yoshinaga, I. & Shiratani, E. & Hitomi, T. & Hasebe, H., 2004. "Characteristics and behavior of nutrients in a paddy field area equipped with a recycling irrigation system," Agricultural Water Management, Elsevier, vol. 68(1), pages 47-60, July.
    4. Jang, T.I. & Kim, H.K. & Im, S.J. & Park, S.W., 2010. "Simulations of storm hydrographs in a mixed-landuse watershed using a modified TR-20 model," Agricultural Water Management, Elsevier, vol. 97(2), pages 201-207, February.
    5. Odhiambo, L. O. & Murty, V. V. N., 1996. "Modeling water balance components in relation to field layout in lowland paddy fields. I. Model development," Agricultural Water Management, Elsevier, vol. 30(2), pages 185-199, April.
    6. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    7. Al-Lahham, O. & El Assi, N. M. & Fayyad, M., 2003. "Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit," Agricultural Water Management, Elsevier, vol. 61(1), pages 51-62, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeong, Hanseok & Jang, Taeil & Seong, Chounghyun & Park, Seungwoo, 2014. "Assessing nitrogen fertilizer rates and split applications using the DSSAT model for rice irrigated with urban wastewater," Agricultural Water Management, Elsevier, vol. 141(C), pages 1-9.
    2. Jeong, Hanseok & Bhattarai, Rabin & Adamowski, Jan & Yu, David J., 2020. "Insights from socio-hydrological modeling to design sustainable wastewater reuse strategies for agriculture at the watershed scale," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Li, Zichuan & Xu, Xinwang & Pan, Genxing & Smith, Pete & Cheng, Kun, 2016. "Irrigation regime affected SOC content rather than plow layer thickness of rice paddies: A county level survey from a river basin in lower Yangtze valley, China," Agricultural Water Management, Elsevier, vol. 172(C), pages 31-39.
    4. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    5. Tran, Dung Duc & van Halsema, Gerardo & Hellegers, Petra J.G.J. & Ludwig, Fulco & Seijger, Chris, 2018. "Stakeholders’ assessment of dike-protected and flood-based alternatives from a sustainable livelihood perspective in An Giang Province, Mekong Delta, Vietnam," Agricultural Water Management, Elsevier, vol. 206(C), pages 187-199.
    6. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    2. Kim, Jihye & Kim, Hakkwan & Kim, Sinae & Jang, Taeil & Jun, Sang-Min & Hwang, Soonho & Song, Jung-Hun & Kang, Moon-Seong, 2022. "Development of a simulation method for paddy fields based on surface FTABLE of hydrological simulation program–FORTRAN," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Hazrat Ali, Md. & Teang Shui, Lee & Chee Yan, Kwok & Eloubaidy, Aziz F. & Foong, K. C., 2000. "Modeling water balance components and irrigation efficiencies in relation to water requirements for double-cropping systems," Agricultural Water Management, Elsevier, vol. 46(2), pages 167-182, December.
    4. Tsubo, M. & Fukai, S. & Tuong, T.P. & Ouk, M., 2007. "A water balance model for rainfed lowland rice fields emphasising lateral water movement within a toposequence," Ecological Modelling, Elsevier, vol. 204(3), pages 503-515.
    5. George, Biju A. & Raghuwanshi, N. S. & Singh, R., 2004. "Development and testing of a GIS integrated irrigation scheduling model," Agricultural Water Management, Elsevier, vol. 66(3), pages 221-237, May.
    6. Yoshinaga, Ikuo & Miura, Asa & Hitomi, Tadayoshi & Hamada, Koji & Shiratani, Eisaku, 2007. "Runoff nitrogen from a large sized paddy field during a crop period," Agricultural Water Management, Elsevier, vol. 87(2), pages 217-222, January.
    7. Shu Chen & Dongguo Shao & Xudong Li & Caixiu Lei, 2016. "Simulation-Optimization Modeling of Conjunctive Operation of Reservoirs and Ponds for Irrigation of Multiple Crops Using an Improved Artificial Bee Colony Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2887-2905, July.
    8. Haorui Chen & Zhanyi Gao & Wenzhi Zeng & Jing Liu & Xiao Tan & Songjun Han & Shaoli Wang & Yongqing Zhao & Chengkun Yu, 2017. "Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China," Sustainability, MDPI, vol. 10(1), pages 1-18, December.
    9. Kim, H.K. & Jang, T.I. & Im, S.J. & Park, S.W., 2009. "Estimation of irrigation return flow from paddy fields considering the soil moisture," Agricultural Water Management, Elsevier, vol. 96(5), pages 875-882, May.
    10. Brinkhoff, James & Houborg, Rasmus & Dunn, Brian W., 2022. "Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery," Agricultural Water Management, Elsevier, vol. 273(C).
    11. Jang, T.I. & Kim, H.K. & Im, S.J. & Park, S.W., 2010. "Simulations of storm hydrographs in a mixed-landuse watershed using a modified TR-20 model," Agricultural Water Management, Elsevier, vol. 97(2), pages 201-207, February.
    12. Kriti Poudel & Ram Hari Timilsina & Anish Bhattarai, 2020. "Effect Of Crop Establishment Methods On Yield Of Spring Rice At Khairahani, Chitwan, Nepal," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 3(1), pages 6-11, November.
    13. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    14. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    15. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    16. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    17. Panigrahi, B. & Panda, S. N. & Mull, R., 2001. "Simulation of water harvesting potential in rainfed ricelands using water balance model," Agricultural Systems, Elsevier, vol. 69(3), pages 165-182, September.
    18. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    19. Ponsioen, Thomas C. & Hengsdijk, Huib & Wolf, Joost & van Ittersum, Martin K. & Rotter, Reimund P. & Son, Tran Thuc & Laborte, Alice G., 2006. "TechnoGIN, a tool for exploring and evaluating resource use efficiency of cropping systems in East and Southeast Asia," Agricultural Systems, Elsevier, vol. 87(1), pages 80-100, January.
    20. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:104:y:2012:i:c:p:235-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.