IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp714-723.html
   My bibliography  Save this article

Irrigation scheduling of paddy rice using short-term weather forecast data

Author

Listed:
  • Cao, Jingjing
  • Tan, Junwei
  • Cui, Yuanlai
  • Luo, Yufeng

Abstract

Better use of rainfall is an essential strategy to save irrigation water for paddy rice. Since unnecessary irrigation is usually applied to field without considering the possible rainfall after irrigation, weather forecast (e.g., rainfall) can be used to potentially save irrigation water. In this study, the rainfall event mainly focused on the total rainfall in consecutive 3 days within rice growth period rather than the daily rainfall. Based on that, three rain levels were redefined for irrigation decision-making. By incorporating the possible rain level of the first 3 days in weather forecast horizon, a new method based on simple decision rule was proposed and evaluated for irrigation scheduling of paddy rice over a wide range of climate conditions in China. The results indicated that, the occurrence probability of each rain level in next 3 days can be clearly recognized, and their forecasting performance was much better than that of daily rain events. Comparing to the conventional irrigation, the newly proposed irrigation scheduling method can further save irrigation water (about 0 − 100 mm) and reduce drainage (about 0 − 60 mm) without significant yield loss (< 1%). The results also showed that, the efficiency of water saving and drainage reduction had a certain correlation with the total rainfall and the daily rainfall distribution during rice growth period. Moreover, about 1 − 3 extra irrigations were needed in this new irrigation scheduling method due to great temp-spatial variation of rainfall distributions and imperfect weather forecasts. Nevertheless, the newly proposed irrigation scheduling method incorporated with weather forecast is suggested to apply in irrigation practice for its simplicity and effectiveness.

Suggested Citation

  • Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:714-723
    DOI: 10.1016/j.agwat.2018.10.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418316652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.10.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yang & Cui, Yuanlai & Luo, Yufeng & Lyu, Xinwei & Traore, Seydou & Khan, Shahbaz & Wang, Weiguang, 2016. "Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 177(C), pages 329-339.
    2. Igbadun, Henry E. & Tarimo, Andrew K.P.R. & Salim, Baanda A. & Mahoo, Henry F., 2007. "Evaluation of selected crop water production functions for an irrigated maize crop," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 1-10, December.
    3. Nijbroek, Ravic & Hoogenboom, Gerrit & Jones, James W., 2003. "Optimizing irrigation management for a spatially variable soybean field," Agricultural Systems, Elsevier, vol. 76(1), pages 359-377, April.
    4. Choudhury, B.U. & Singh, Anil Kumar, 2016. "Estimation of crop coefficient of irrigated transplanted puddled rice by field scale water balance in the semi-arid Indo-Gangetic Plains, India," Agricultural Water Management, Elsevier, vol. 176(C), pages 142-150.
    5. Luo, Yufeng & Chang, Xiaomin & Peng, Shizhang & Khan, Shahbaz & Wang, Weiguang & Zheng, Qiang & Cai, Xueliang, 2014. "Short-term forecasting of daily reference evapotranspiration using the Hargreaves–Samani model and temperature forecasts," Agricultural Water Management, Elsevier, vol. 136(C), pages 42-51.
    6. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    7. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.
    8. Stirzaker, Richard J. & Maeko, Tshepo C. & Annandale, John G. & Steyn, J. Martin & Adhanom, Goitom T. & Mpuisang, Thembeka, 2017. "Scheduling irrigation from wetting front depth," Agricultural Water Management, Elsevier, vol. 179(C), pages 306-313.
    9. Shang, Songhao & Mao, Xiaomin, 2006. "Application of a simulation based optimization model for winter wheat irrigation scheduling in North China," Agricultural Water Management, Elsevier, vol. 85(3), pages 314-322, October.
    10. Lv, Yuping & Xu, Junzeng & Yang, Shihong & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2018. "Inter-seasonal and cross-treatment variability in single-crop coefficients for rice evapotranspiration estimation and their validation under drying-wetting cycle conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 154-161.
    11. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    12. Gowing, J. W. & Ejieji, C. J., 2001. "Real-time scheduling of supplemental irrigation for potatoes using a decision model and short-term weather forecasts," Agricultural Water Management, Elsevier, vol. 47(2), pages 137-153, March.
    13. Yoshinaga, Ikuo & Miura, Asa & Hitomi, Tadayoshi & Hamada, Koji & Shiratani, Eisaku, 2007. "Runoff nitrogen from a large sized paddy field during a crop period," Agricultural Water Management, Elsevier, vol. 87(2), pages 217-222, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Chen, Mengting & Linker, Raphael & Wu, Conglin & Xie, Hua & Cui, Yuanlai & Luo, Yufeng & Lv, Xinwei & Zheng, Shizong, 2022. "Multi-objective optimization of rice irrigation modes using ACOP-Rice model and historical meteorological data," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Chen, Mengting & Cui, Yuanlai & Wang, Xiaonan & Xie, Hengwang & Liu, Fangping & Luo, Tongyuan & Zheng, Shizong & Luo, Yufeng, 2021. "A reinforcement learning approach to irrigation decision-making for rice using weather forecasts," Agricultural Water Management, Elsevier, vol. 250(C).
    4. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2021. "Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Lu, Junsheng & Geng, Chenming & Cui, Xiaolu & Li, Mengyue & Chen, Shuaihong & Hu, Tiantian, 2021. "Response of drip fertigated wheat-maize rotation system on grain yield, water productivity and economic benefits using different water and nitrogen amounts," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Zhao, Xueyin & Chen, Mengting & Xie, Hua & Luo, Wanqi & Wei, Guangfei & Zheng, Shizong & Wu, Conglin & Khan, Shahbaz & Cui, Yuanlai & Luo, Yufeng, 2023. "Analysis of irrigation demands of rice: Irrigation decision-making needs to consider future rainfall," Agricultural Water Management, Elsevier, vol. 280(C).
    7. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Tulip, Shibli Sadik & Siddik, Md Sifat & Islam, Md. Nazrul & Rahman, Atikur & Torabi Haghighi, Ali & Mustafa, Syed Md Touhidul, 2022. "The impact of irrigation return flow on seasonal groundwater recharge in northwestern Bangladesh," Agricultural Water Management, Elsevier, vol. 266(C).
    9. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Rangjian & Li, Longan & Liu, Chunwei & Wang, Zhenchang & Zhang, Baozhong & Liu, Zhandong, 2022. "Evapotranspiration estimation using a modified crop coefficient model in a rotated rice-winter wheat system," Agricultural Water Management, Elsevier, vol. 264(C).
    2. Chen, Mengting & Cui, Yuanlai & Wang, Xiaonan & Xie, Hengwang & Liu, Fangping & Luo, Tongyuan & Zheng, Shizong & Luo, Yufeng, 2021. "A reinforcement learning approach to irrigation decision-making for rice using weather forecasts," Agricultural Water Management, Elsevier, vol. 250(C).
    3. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    4. Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
    5. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    6. Dasgupta, Pragna & Das, Bhabani S. & Sen, Soumitra K., 2015. "Soil water potential and recoverable water stress in drought tolerant and susceptible rice varieties," Agricultural Water Management, Elsevier, vol. 152(C), pages 110-118.
    7. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
    8. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    9. Hochman, Zvi & Horan, Heidi & Reddy, D. Raji & Sreenivas, Gade & Tallapragada, Chiranjeevi & Adusumilli, Ravindra & Gaydon, Don & Singh, Kamalesh K. & Roth, Christian H., 2017. "Smallholder farmers managing climate risk in India: 1. Adapting to a variable climate," Agricultural Systems, Elsevier, vol. 150(C), pages 54-66.
    10. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Qiu, Rangjian & Guo, Ping & Chen, Renqiang, 2013. "Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages," Agricultural Water Management, Elsevier, vol. 129(C), pages 152-162.
    11. Seydou Traore & Yufeng Luo & Guy Fipps, 2017. "Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4891-4908, December.
    12. Qiu, Rangjian & Luo, Yufeng & Wu, Jingwei & Zhang, Baozhong & Liu, Zhihe & Agathokleous, Evgenios & Yang, Xiumei & Hu, Wei & Clothier, Brent, 2023. "Short–term forecasting of daily evapotranspiration from rice using a modified Priestley–Taylor model and public weather forecasts," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    14. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    15. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    16. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    17. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).
    18. Xiaoguang, Yang & Bouman, B.A.M. & Huaqi, Wang & Zhimin, Wang & Junfang, Zhao & Bin, Chen, 2005. "Performance of temperate aerobic rice under different water regimes in North China," Agricultural Water Management, Elsevier, vol. 74(2), pages 107-122, June.
    19. Bouman, B. A.M. & Feng, Liping & Tuong, T.P. & Lu, Guoan & Wang, Huaqi & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: II. Quantifying yield, water balance components, and water productivity," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 23-33, March.
    20. Islam, S.M. Mofijul & Gaihre, Yam Kanta & Biswas, Jatish Chandra & Jahan, Md. Sarwar & Singh, Upendra & Adhikary, Sanjoy Kumar & Satter, M. Abdus & Saleque, M.A., 2018. "Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield," Agricultural Water Management, Elsevier, vol. 196(C), pages 144-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:714-723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.