IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp934-946.html
   My bibliography  Save this article

Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China

Author

Listed:
  • Alhaj Hamoud, Yousef
  • Guo, Xiangping
  • Wang, Zhenchang
  • Shaghaleh, Hiba
  • Chen, Sheng
  • Hassan, Alfadil
  • Bakour, Ahmad

Abstract

Rice is commonly grown in clay soils under flooding or water-saving irrigation. The combination of irrigation regime and soil texture tend to create the distinguished growing environment of crops. However, plant response to this combination environment is seldom studied in rice grown in southern China. To investigate the effects of irrigation regime, soil texture type and their interaction on the biomass production, nitrogen uptake and nitrogen-use efficiency of rice, a shelter experiment was conducted using a randomized complete block design with a factorial arrangement of treatments with four replications. The main treatment was irrigation regime, set in three levels as R (30mm-100%), (100% saturation, 30 mm flooded), R (30mm-90%), (90% saturation, 30 mm flooded) and R (30mm-70%), (70% saturation, 30 mm flooded). The subtreatment was the soil texture type, set in three levels as 40%, 50% and 60% clay content, respectively. The irrigation regime, soil texture, and their combined interaction had significant effects on the biomass yield and nitrogen-use efficiency of rice. Compared to that of anaerobic-flooded water regime, biomass yield, nitrogen uptake and nitrogen utilization efficiency of the aerobic-flooded water regime were markedly reduced in both seasons of 2016 and 2017. Higher soil expanding clay content improved the biomass production and nitrogen utilization of rice in the both seasons. Maintaining soil water content at saturation and then reflooding was the optimal water management practice for rice cultivation in the soil, with 60% swelling clay content. The optimal combination R (30mm-100%) S (60%) presented the greatest nitrogen-use efficiency, which was 34.7% in 2016 and 46.6% in 2017. Soil swelling was dominant in the combination R (30mm-100%) S (60%), as it increased the biomass yield, absorption and nitrogen utilization of the rice plant by 64.0%, 81.5% and 76.2% in 2016, and 67.2%, 82.9% and 77.9 in 2017, compared to the combination R (30mm-70%) S (40%). Allowing the expansive soil to dry to 30% below the saturation point and then reflooding resulted in a sharp reduction in the nitrogen-use efficiency of rice of 8.2% in 2016 and 10.3% in 2017 due to cracks in the soil that preferentially became the major routes of water and nutrient losses. Soil cracking is dependent on the irrigation regime and soil texture, and cracks must be avoided when yielding rice in vertic clay soil under water saving irrigation. Our results are valuable in deciding what water management option to practice when yielding rice in swell-shrink clay soil. The results are also an important contribution to knowledge of soil, water and rice relationships.

Suggested Citation

  • Alhaj Hamoud, Yousef & Guo, Xiangping & Wang, Zhenchang & Shaghaleh, Hiba & Chen, Sheng & Hassan, Alfadil & Bakour, Ahmad, 2019. "Effects of irrigation regime and soil clay content and their interaction on the biological yield, nitrogen uptake and nitrogen-use efficiency of rice grown in southern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 934-946.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:934-946
    DOI: 10.1016/j.agwat.2018.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418312010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patel, D.P. & Das, Anup & Munda, G.C. & Ghosh, P.K. & Bordoloi, Juri Sandhya & Kumar, Manoj, 2010. "Evaluation of yield and physiological attributes of high-yielding rice varieties under aerobic and flood-irrigated management practices in mid-hills ecosystem," Agricultural Water Management, Elsevier, vol. 97(9), pages 1269-1276, September.
    2. Yang, Changming & Yang, Linzhang & Yang, Yongxing & Ouyang, Zhu, 2004. "Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils," Agricultural Water Management, Elsevier, vol. 70(1), pages 67-81, October.
    3. Belder, P. & Bouman, B. A. M. & Cabangon, R. & Guoan, Lu & Quilang, E. J. P. & Yuanhua, Li & Spiertz, J. H. J. & Tuong, T. P., 2004. "Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia," Agricultural Water Management, Elsevier, vol. 65(3), pages 193-210, March.
    4. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Willy Franz Gouertoumbo & Yousef Alhaj Hamoud & Xiangping Guo & Hiba Shaghaleh & Amar Ali Adam Hamad & Elsayed Elsadek, 2022. "Wheat Straw Burial Enhances the Root Physiology, Productivity, and Water Utilization Efficiency of Rice under Alternative Wetting and Drying Irrigation," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    2. Mir Moazzam Ali Talpur & Hiba Shaghaleh & Amar Ali Adam Hamad & Tingting Chang & Muhammad Zia-ur-Rehman & Muhammad Usman & Yousef Alhaj Hamoud, 2023. "Effect of Planting Geometry on Growth, Water Productivity, and Fruit Quality of Tomatoes under Different Soil Moisture Regimes," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    3. Ariani, Miranti & Hanudin, Eko & Haryono, Eko, 2022. "The effect of contrasting soil textures on the efficiency of alternate wetting-drying to reduce water use and global warming potential," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Alhaj Hamoud, Yousef & Shaghaleh, Hiba & Sheteiwy, Mohamed & Guo, Xiangping & Elshaikh, Nazar A. & Ullah Khan, Nasr & Oumarou, Abdoulaye & Rahim, Shah Fahad, 2019. "Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Wu, Wanping & Liu, Minguo & Wu, Xiaojuan & Wang, Zikui & Yang, Huimin, 2022. "Effects of deficit irrigation on nitrogen uptake and soil mineral nitrogen in alfalfa grasslands of the inland arid area of China," Agricultural Water Management, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Junlin & Chen, Taotao & Wu, Qi & Yu, Jianming & Chen, Wei & Chen, Yinglong & Siddique, Kadambot H.M. & Meng, Weizhong & Chi, Daocai & Xia, Guimin, 2018. "Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress," Agricultural Water Management, Elsevier, vol. 206(C), pages 241-251.
    2. Alhaj Hamoud, Yousef & Shaghaleh, Hiba & Sheteiwy, Mohamed & Guo, Xiangping & Elshaikh, Nazar A. & Ullah Khan, Nasr & Oumarou, Abdoulaye & Rahim, Shah Fahad, 2019. "Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Thakur, Amod K. & Mandal, Krishna G. & Mohanty, Rajeeb K. & Ambast, Sunil K., 2018. "Rice root growth, photosynthesis, yield and water productivity improvements through modifying cultivation practices and water management," Agricultural Water Management, Elsevier, vol. 206(C), pages 67-77.
    4. Borin, José Bernardo Moraes & Carmona, Felipe de Campos & Anghinoni, Ibanor & Martins, Amanda Posselt & Jaeger, Isadora Rodrigues & Marcolin, Elio & Hernandes, Gustavo Cantori & Camargo, Estefânia Sil, 2016. "Soil solution chemical attributes, rice response and water use efficiency under different flood irrigation management methods," Agricultural Water Management, Elsevier, vol. 176(C), pages 9-17.
    5. Willy Franz Gouertoumbo & Yousef Alhaj Hamoud & Xiangping Guo & Hiba Shaghaleh & Amar Ali Adam Hamad & Elsayed Elsadek, 2022. "Wheat Straw Burial Enhances the Root Physiology, Productivity, and Water Utilization Efficiency of Rice under Alternative Wetting and Drying Irrigation," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    6. Ishfaq, Muhammad & Farooq, Muhammad & Zulfiqar, Usman & Hussain, Saddam & Akbar, Nadeem & Nawaz, Ahmad & Anjum, Shakeel Ahmad, 2020. "Alternate wetting and drying: A water-saving and ecofriendly rice production system," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Poddar, Ratneswar & Acharjee, P.U. & Bhattacharyya, K. & Patra, S.K., 2022. "Effect of irrigation regime and varietal selection on the yield, water productivity, energy indices and economics of rice production in the lower Gangetic Plains of Eastern India," Agricultural Water Management, Elsevier, vol. 262(C).
    8. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    9. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    10. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    11. Dasgupta, Pragna & Das, Bhabani S. & Sen, Soumitra K., 2015. "Soil water potential and recoverable water stress in drought tolerant and susceptible rice varieties," Agricultural Water Management, Elsevier, vol. 152(C), pages 110-118.
    12. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    13. Hochman, Zvi & Horan, Heidi & Reddy, D. Raji & Sreenivas, Gade & Tallapragada, Chiranjeevi & Adusumilli, Ravindra & Gaydon, Don & Singh, Kamalesh K. & Roth, Christian H., 2017. "Smallholder farmers managing climate risk in India: 1. Adapting to a variable climate," Agricultural Systems, Elsevier, vol. 150(C), pages 54-66.
    14. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    15. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    16. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    17. Xiaoguang, Yang & Bouman, B.A.M. & Huaqi, Wang & Zhimin, Wang & Junfang, Zhao & Bin, Chen, 2005. "Performance of temperate aerobic rice under different water regimes in North China," Agricultural Water Management, Elsevier, vol. 74(2), pages 107-122, June.
    18. Bouman, B. A.M. & Feng, Liping & Tuong, T.P. & Lu, Guoan & Wang, Huaqi & Feng, Yuehua, 2007. "Exploring options to grow rice using less water in northern China using a modelling approach: II. Quantifying yield, water balance components, and water productivity," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 23-33, March.
    19. Islam, S.M. Mofijul & Gaihre, Yam Kanta & Biswas, Jatish Chandra & Jahan, Md. Sarwar & Singh, Upendra & Adhikary, Sanjoy Kumar & Satter, M. Abdus & Saleque, M.A., 2018. "Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield," Agricultural Water Management, Elsevier, vol. 196(C), pages 144-153.
    20. Luo, Wanqi & Chen, Mengting & Kang, Yinhong & Li, Wenping & Li, Dan & Cui, Yuanlai & Khan, Shahbaz & Luo, Yufeng, 2022. "Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall," Agricultural Water Management, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:934-946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.