IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i2p201-207.html
   My bibliography  Save this article

Simulations of storm hydrographs in a mixed-landuse watershed using a modified TR-20 model

Author

Listed:
  • Jang, T.I.
  • Kim, H.K.
  • Im, S.J.
  • Park, S.W.

Abstract

Most flood damage in Korea is caused by heavy rainfall events and typhoons during the summer rainy season. A modified Natural Resources Conservation Service (NRCS) TR-20 model, TR-20-RICE, was developed to investigate the storm runoff characteristics of a 385-ha mixed-landuse watershed in Korea. The TR-20-RICE not only used the rainfall excess and hydrologic flood routing components of the original TR-20 model, but also included a paddy runoff process, which captured irrigated paddy runoff characteristics such as inundation, retention storage, and surface runoff. The performances of TR-20 and TR-20-RICE were compared using storm hydrographs and observational data. The results indicated that both models simulated storm runoff accurately over the simulation period. The TR-20-RICE runoff volume, peak discharge, and time-to-peak predictions were slightly closer to observations than those of the TR-20. The TR-20-RICE model may an effective alternative to the TR-20 model for generating storm hydrographs, particularly in the mixed-landuse watershed in Korea.

Suggested Citation

  • Jang, T.I. & Kim, H.K. & Im, S.J. & Park, S.W., 2010. "Simulations of storm hydrographs in a mixed-landuse watershed using a modified TR-20 model," Agricultural Water Management, Elsevier, vol. 97(2), pages 201-207, February.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:201-207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00271-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, H.K. & Jang, T.I. & Im, S.J. & Park, S.W., 2009. "Estimation of irrigation return flow from paddy fields considering the soil moisture," Agricultural Water Management, Elsevier, vol. 96(5), pages 875-882, May.
    2. Chung, Sang-Ok & Kim, Hyeon-Soo & Kim, Jin Soo, 2003. "Model development for nutrient loading from paddy rice fields," Agricultural Water Management, Elsevier, vol. 62(1), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jang, T.I. & Kim, H.K. & Seong, C.H. & Lee, E.J. & Park, S.W., 2012. "Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 104(C), pages 235-243.
    2. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    3. Haorui Chen & Zhanyi Gao & Wenzhi Zeng & Jing Liu & Xiao Tan & Songjun Han & Shaoli Wang & Yongqing Zhao & Chengkun Yu, 2017. "Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China," Sustainability, MDPI, vol. 10(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonopoulos, Vassilis Z., 2010. "Modelling of water and nitrogen balances in the ponded water and soil profile of rice fields in Northern Greece," Agricultural Water Management, Elsevier, vol. 98(2), pages 321-330, December.
    2. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    3. Kim, Jihye & Kim, Hakkwan & Kim, Sinae & Jang, Taeil & Jun, Sang-Min & Hwang, Soonho & Song, Jung-Hun & Kang, Moon-Seong, 2022. "Development of a simulation method for paddy fields based on surface FTABLE of hydrological simulation program–FORTRAN," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    5. Kang, Mingoo & Park, Seungwoo, 2014. "Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations," Agricultural Water Management, Elsevier, vol. 143(C), pages 131-141.
    6. Vu, Son Hong & Watanabe, Hirozumi & Takagi, Kazuhiro, 2005. "Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan," Agricultural Water Management, Elsevier, vol. 76(3), pages 195-210, August.
    7. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    8. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.
    9. Kovacs, Kent & Tran, Dat Q., 2023. "Irrigation choice through water supply augmentation in the presence of climate risk and uncertainty," 2023 Annual Meeting, July 23-25, Washington D.C. 335432, Agricultural and Applied Economics Association.
    10. Gordon, Beatrice L. & Paige, Ginger B. & Miller, Scott N. & Claes, Niels & Parsekian, Andrew D., 2020. "Field scale quantification indicates potential for variability in return flows from flood irrigation in the high altitude western US," Agricultural Water Management, Elsevier, vol. 232(C).
    11. Gaiqiang Yang & Ping Guo & Mo Li & Shiqi Fang & Liudong Zhang, 2016. "An Improved Solving Approach for Interval-Parameter Programming and Application to an Optimal Allocation of Irrigation Water Problem," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 701-729, January.
    12. Jeon, Ji-Hong & Yoon, Chun G. & Donigian, Anthony Jr. & Jung, Kwang-Wook, 2007. "Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 75-86, May.
    13. Tulip, Shibli Sadik & Siddik, Md Sifat & Islam, Md. Nazrul & Rahman, Atikur & Torabi Haghighi, Ali & Mustafa, Syed Md Touhidul, 2022. "The impact of irrigation return flow on seasonal groundwater recharge in northwestern Bangladesh," Agricultural Water Management, Elsevier, vol. 266(C).
    14. Wassmann, R. & Pathak, H., 2007. "Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: II. Cost-benefit assessment for different technologies, regions and scales," Agricultural Systems, Elsevier, vol. 94(3), pages 826-840, June.
    15. Liu, Wei & Fu, Qiang & Meng, Jun & Li, Tianxiao & Cheng, Kun, 2019. "Simulation and analysis of return flow at the field scale in the northern rice irrigation area of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    16. Kamruzzaman, Mohammad & Hwang, Syewoon & Choi, Soon-Kun & Cho, Jaepil & Song, Inhong & Jeong, Hanseok & Song, Jung-Hun & Jang, Teail & Yoo, Seung-Hwan, 2020. "Prediction of the effects of management practices on discharge and mineral nitrogen yield from paddy fields under future climate using APEX-paddy model," Agricultural Water Management, Elsevier, vol. 241(C).
    17. Xuezhi Tan & Dongguo Shao & Wenquan Gu, 2018. "Improving Water Reuse in Paddy Field Districts with Cascaded On-farm Ponds using Hydrologic Model Simulations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1849-1865, March.
    18. Jang, T.I. & Kim, H.K. & Seong, C.H. & Lee, E.J. & Park, S.W., 2012. "Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 104(C), pages 235-243.
    19. Naghedifar, Seyed Mohammadreza & Ziaei, Ali Naghi & Ansari, Hossein, 2018. "Simulation of irrigation return flow from a Triticale farm under sprinkler and furrow irrigation systems using experimental data: A case study in arid region," Agricultural Water Management, Elsevier, vol. 210(C), pages 185-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:201-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.