IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i10p1435-1442.html
   My bibliography  Save this article

A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area

Author

Listed:
  • Shen, Z.Y.
  • Gong, Y.W.
  • Li, Y.H.
  • Hong, Q.
  • Xu, L.
  • Liu, R.M.

Abstract

Soil and water conservation is important for the Three Gorges Reservoir Area in China, and quantification of soil loss is a significant issue. In this study, two widely used models - the Water Erosion Prediction Project (WEPP) and the Soil and Water Assessment Tool (SWAT) - were applied to simulate runoff and sediment yield for the Zhangjiachong Watershed in the Three Gorges Reservoir Area. The models were run and the simulated runoff and sediment yield values were compared with the measured runoff and sediment yield values. In the calibration period, the model efficiency (ENS) values for the WEPP and SWAT were 0.864 and 0.711 for runoff, and 0.847 and 0.678 for sediment yield, respectively. In the validation period, the ENS values for WEPP and SWAT were 0.835 and 0.690 for runoff, and 0.828 and 0.818 for sediment yield, respectively. The results of ENS and the other criteria indicate that the results of both models were acceptable. WEPP simulations were better than SWAT in most cases, and could be used with a reasonable confidence for soil loss quantification in the Zhangjiachong Watershed.

Suggested Citation

  • Shen, Z.Y. & Gong, Y.W. & Li, Y.H. & Hong, Q. & Xu, L. & Liu, R.M., 2009. "A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area," Agricultural Water Management, Elsevier, vol. 96(10), pages 1435-1442, October.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:10:p:1435-1442
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00132-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chanasyk, D. S. & Mapfumo, E. & Willms, W., 2003. "Quantification and simulation of surface runoff from fescue grassland watersheds," Agricultural Water Management, Elsevier, vol. 59(2), pages 137-153, March.
    2. Reshmidevi, T.V. & Jana, R. & Eldho, T.I., 2008. "Geospatial estimation of soil moisture in rain-fed paddy fields using SCS-CN-based model," Agricultural Water Management, Elsevier, vol. 95(4), pages 447-457, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Q. & Huang, G.H. & Cai, Y.P., 2011. "Radial interval chance-constrained programming for agricultural non-point source water pollution control under uncertainty," Agricultural Water Management, Elsevier, vol. 98(10), pages 1595-1606, August.
    2. Yan Yang & Guoqiang Wang & Lijing Wang & Jingshan Yu & Zongxue Xu, 2014. "Evaluation of Gridded Precipitation Data for Driving SWAT Model in Area Upstream of Three Gorges Reservoir," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-15, November.
    3. Bruno Gianmarco Carra & Giuseppe Bombino & Manuel Esteban Lucas-Borja & Pietro Denisi & Pedro Antonio Plaza-Álvarez & Demetrio Antonio Zema, 2021. "Modelling the Event-Based Hydrological Response of Mediterranean Forests to Prescribed Fire and Soil Mulching with Fern Using the Curve Number, Horton and USLE-Family (Universal Soil Loss Equation) Mo," Land, MDPI, vol. 10(11), pages 1-31, October.
    4. Shi, Yingyuan & Xu, Gaohong & Wang, Yonggui & Engel, Bernard A. & Peng, Hong & Zhang, Wanshun & Cheng, Meiling & Dai, Minglong, 2017. "Modelling hydrology and water quality processes in the Pengxi River basin of the Three Gorges Reservoir using the soil and water assessment tool," Agricultural Water Management, Elsevier, vol. 182(C), pages 24-38.
    5. Qinqin Zhang & Fang Gu & Sicong Zhang & Xuehua Chen & Xue Ding & Zhonglin Xu, 2024. "Spatiotemporal Variation in Wind Erosion in Tarim River Basin from 2010 to 2018," Land, MDPI, vol. 13(3), pages 1-14, March.
    6. Yamuna Giambastiani & Riccardo Giusti & Lorenzo Gardin & Stefano Cecchi & Maurizio Iannuccilli & Stefano Romanelli & Lorenzo Bottai & Alberto Ortolani & Bernardo Gozzini, 2022. "Assessing Soil Erosion by Monitoring Hilly Lakes Silting," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    7. Paschalis Koutalakis & Georgios Gkiatas & Michael Xinogalos & Valasia Iakovoglou & Iordanis Kasapidis & Georgios Pagonis & Anastasia Savvopoulou & Konstantinos Krikopoulos & Theodoros Klepousniotis & , 2024. "Estimating Stream Bank and Bed Erosion and Deposition with Innovative and Traditional Methods," Land, MDPI, vol. 13(2), pages 1-29, February.
    8. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donkor, N.T. & Hudson, R.J. & Bork, E.W., 2007. "Simulation and quantification of pasture condition and animal performance on boreal grasslands in Alberta," Agricultural Systems, Elsevier, vol. 93(1-3), pages 229-251, March.
    2. Schmidt, Emily & Zemadim, Birhanu, 2014. "Hydrological modeling of sustainable land management interventions in the Mizewa watershed of the Blue Nile Basin:," ESSP working papers 61, International Food Policy Research Institute (IFPRI).
    3. Celette, Florian & Ripoche, Aude & Gary, Christian, 2010. "WaLIS--A simple model to simulate water partitioning in a crop association: The example of an intercropped vineyard," Agricultural Water Management, Elsevier, vol. 97(11), pages 1749-1759, November.
    4. Hye Lee & Eun Kim & Seok Park & Jung Choi, 2012. "Effects of climate change on the thermal structure of lakes in the Asian Monsoon Area," Climatic Change, Springer, vol. 112(3), pages 859-880, June.
    5. Schmidt, Emily & Zemadim, Birhanu, 2015. "Expanding sustainable land management in Ethiopia: Scenarios for improved agricultural water management in the Blue Nile," Agricultural Water Management, Elsevier, vol. 158(C), pages 166-178.
    6. Mekonnen, Balew A. & Mazurek, Kerry A. & Putz, Gordon, 2017. "Modeling of nutrient export and effects of management practices in a cold-climate prairie watershed: Assiniboine River watershed, Canada," Agricultural Water Management, Elsevier, vol. 180(PB), pages 235-251.
    7. Jung, Jae-Woon & Yoon, Kwang-Sik & Choi, Dong-Ho & Lim, Sang-Sun & Choi, Woo-Jung & Choi, Soo-Myung & Lim, Byung-Jin, 2012. "Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes," Agricultural Water Management, Elsevier, vol. 110(C), pages 78-83.
    8. F. Gökbulak & Y. Serengil & S. Özhan & N. Özyuvacı & N. Balcı, 2008. "Effect of Timber Harvest on Physical Water Quality Characteristics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(5), pages 635-649, May.
    9. Hamideh Noory & Mona Deyhool & Farhad Mirzaei, 2019. "A Simulation-Optimization Model for Conjunctive Use of Canal and Pond in Irrigating Paddy Fields," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1053-1068, February.
    10. Jeon, Ji-Hong & Yoon, Chun G. & Donigian, Anthony Jr. & Jung, Kwang-Wook, 2007. "Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 75-86, May.
    11. Akansha Kushwaha & Manoj Jain, 2013. "Hydrological Simulation in a Forest Dominated Watershed in Himalayan Region using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3005-3023, June.
    12. Pogue, Sarah J. & Kröbel, Roland & Janzen, H. Henry & Beauchemin, Karen A. & Legesse, Getahun & de Souza, Danielle Maia & Iravani, Majid & Selin, Carrie & Byrne, James & McAllister, Tim A., 2018. "Beef production and ecosystem services in Canada’s prairie provinces: A review," Agricultural Systems, Elsevier, vol. 166(C), pages 152-172.
    13. Welderufael, W.A. & Woyessa, Y.E. & Edossa, D.C., 2013. "Impact of rainwater harvesting on water resources of the modder river basin, central region of South Africa," Agricultural Water Management, Elsevier, vol. 116(C), pages 218-227.
    14. Reshmidevi, T.V. & Eldho, T.I. & Jana, R., 2009. "A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds," Agricultural Systems, Elsevier, vol. 101(1-2), pages 101-109, June.
    15. Gaudin, Rémi & Celette, Florian & Gary, Christian, 2010. "Contribution of runoff to incomplete off season soil water refilling in a Mediterranean vineyard," Agricultural Water Management, Elsevier, vol. 97(10), pages 1534-1540, October.
    16. Mohamed A. Mattar & A. A. Alazba & Bander Alblewi & Bahram Gharabaghi & Mohamed A. Yassin, 2016. "Evaluating and Calibrating Reference Evapotranspiration Models Using Water Balance under Hyper-Arid Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3745-3767, September.
    17. Kim, H.K. & Jang, T.I. & Im, S.J. & Park, S.W., 2009. "Estimation of irrigation return flow from paddy fields considering the soil moisture," Agricultural Water Management, Elsevier, vol. 96(5), pages 875-882, May.
    18. Miller, J. & Chanasyk, D. & Curtis, T. & Entz, T. & Willms, W., 2011. "Environmental quality of Lower Little Bow River and riparian zone along an unfenced reach with off-stream watering," Agricultural Water Management, Elsevier, vol. 98(10), pages 1505-1515, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:10:p:1435-1442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.