IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v95y2008i3p211-223.html
   My bibliography  Save this article

A comparison of the water use of tree belts and pasture in recharge and discharge zones in a saline catchment in the Central West of NSW, Australia

Author

Listed:
  • Crosbie, Russell S.
  • Wilson, Brett
  • Hughes, Justin D.
  • McCulloch, Christopher
  • King, Warren McG.

Abstract

Planting trees has been proposed as part of the solution to dryland salinity in Australia. The best location in the landscape and the spatial arrangement of trees however, is difficult to determine. This paper presents a case study of a field experiment that compared the water use of tree belts with that of pastures in recharge and discharge areas of a first order catchment in the Central West of NSW, Australia. The recharge tree belt and both pasture sites used very similar amounts of water but the discharge tree belt used double the water of the other three land uses by accessing groundwater. The discharge tree belt operated in an energy-limited environment, transpiring at a rate equivalent to atmospheric demand whereas the other three land uses were all water-limited. From a land management point of view, the establishment of more trees on the discharge site would have the biggest impact on reducing saline discharge and the least impact on the agricultural operations.

Suggested Citation

  • Crosbie, Russell S. & Wilson, Brett & Hughes, Justin D. & McCulloch, Christopher & King, Warren McG., 2008. "A comparison of the water use of tree belts and pasture in recharge and discharge zones in a saline catchment in the Central West of NSW, Australia," Agricultural Water Management, Elsevier, vol. 95(3), pages 211-223, March.
  • Handle: RePEc:eee:agiwat:v:95:y:2008:i:3:p:211-223
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(07)00265-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benyon, R. G. & Marcar, N. E. & Crawford, D. F. & Nicholson, A. T., 1999. "Growth and water use of Eucalyptus camaldulensis and E. occidentalis on a saline discharge site near Wellington, NSW, Australia," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 229-244, February.
    2. George, R. J. & Nulsen, R. A. & Ferdowsian, R. & Raper, G. P., 1999. "Interactions between trees and groundwaters in recharge and discharge areas - A survey of Western Australian sites," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 91-113, February.
    3. Morris, J. D. & Collopy, J. J., 1999. "Water use and salt accumulation by Eucalyptus camaldulensis and Casuarina cunninghamiana on a site with shallow saline groundwater," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 205-227, February.
    4. Crosbie, Russell S. & Hughes, Justin D. & Friend, John & Baldwin, Basil J., 2007. "Monitoring the hydrological impact of land use change in a small agricultural catchment affected by dryland salinity in central NSW, Australia," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 43-53, March.
    5. White, D. A. & Dunin, F. X. & Turner, N. C. & Ward, B. H. & Galbraith, J. H., 2002. "Water use by contour-planted belts of trees comprised of four Eucalyptus species," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 133-152, February.
    6. Benyon, Richard G. & Marcar, Nico E. & Theiveyanathan, Swaminathan & Tunningley, W. Mark & Nicholson, Alan T., 2001. "Species differences in transpiration on a saline discharge site," Agricultural Water Management, Elsevier, vol. 50(1), pages 65-81, August.
    7. Mahmood, Khalid & Morris, Jim & Collopy, John & Slavich, Peter, 2001. "Groundwater uptake and sustainability of farm plantations on saline sites in Punjab province, Pakistan," Agricultural Water Management, Elsevier, vol. 48(1), pages 1-20, May.
    8. Ellis, Tim & Hatton, Tom & Nuberg, Ian, 2005. "An ecological optimality approach for predicting deep drainage from tree belts of alley farms in water-limited environments," Agricultural Water Management, Elsevier, vol. 75(2), pages 92-116, July.
    9. Angus, D. E. & Watts, P. J., 1984. "Evapotranspiration -- How good is the Bowen ratio method?," Agricultural Water Management, Elsevier, vol. 8(1-3), pages 133-150, January.
    10. Heuperman, Alfred, 1999. "Hydraulic gradient reversal by trees in shallow water table areas and repercussions for the sustainability of tree-growing systems," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 153-167, February.
    11. Stirzaker, R. J. & Cook, F. J. & Knight, J. H., 1999. "Where to plant trees on cropping land for control of dryland salinity: some approximate solutions," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 115-133, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haslem, Angie & Bennett, Andrew F. & Radford, James Q., 2024. "Importance of (semi)natural vegetation on farms for achieving multiple objectives: A conceptual model based on temperate southern Australia," Agricultural Systems, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minhas, P.S. & Yadav, R.K. & Bali, Aradhana, 2020. "Perspectives on reviving waterlogged and saline soils through plantation forestry," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Nosetto, M.D. & Acosta, A.M. & Jayawickreme, D.H. & Ballesteros, S.I. & Jackson, R.B. & Jobbágy, E.G., 2013. "Land-use and topography shape soil and groundwater salinity in central Argentina," Agricultural Water Management, Elsevier, vol. 129(C), pages 120-129.
    3. Brooksbank, K. & Veneklaas, E.J. & White, D.A. & Carter, J.L., 2011. "Water availability determines hydrological impact of tree belts in dryland cropping systems," Agricultural Water Management, Elsevier, vol. 100(1), pages 76-83.
    4. White, D. A. & Dunin, F. X. & Turner, N. C. & Ward, B. H. & Galbraith, J. H., 2002. "Water use by contour-planted belts of trees comprised of four Eucalyptus species," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 133-152, February.
    5. John, Michele & Kingwell, Ross S., 2002. "A review of options for dryland salinity management in low rainfall agricultural environments in Western Australia," 2002 Conference (46th), February 13-15, 2002, Canberra, Australia 183424, Australian Agricultural and Resource Economics Society.
    6. Minhas, P.S. & Yadav, R.K. & Lal, K. & Chaturvedi, R.K., 2015. "Effect of long-term irrigation with wastewater on growth, biomass production and water use by Eucalyptus (Eucalyptus tereticornis Sm.) planted at variable stocking density," Agricultural Water Management, Elsevier, vol. 152(C), pages 151-160.
    7. Woodall, G. S. & Ward, B. H., 2002. "Soil water relations, crop production and root pruning of a belt of trees," Agricultural Water Management, Elsevier, vol. 53(1-3), pages 153-169, February.
    8. Ward, P. R. & Dunin, F. X., 2001. "Growing season evapotranspiration from duplex soils in south-western Australia," Agricultural Water Management, Elsevier, vol. 50(2), pages 141-159, September.
    9. Reijnders, L., 2006. "Conditions for the sustainability of biomass based fuel use," Energy Policy, Elsevier, vol. 34(7), pages 863-876, May.
    10. Gill, Bruce C. & Terry, Alister D., 2016. "‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia," Agricultural Water Management, Elsevier, vol. 164(P2), pages 291-303.
    11. Hajkowicz, Stefan & Young, Michael D., 2003. "Economic Impacts Of Dryland Salinity For Grains Industries," 2003 Conference (47th), February 12-14, 2003, Fremantle, Australia 57884, Australian Agricultural and Resource Economics Society.
    12. Xiaojing Ni & Prem B. Parajuli & Ying Ouyang, 2020. "Assessing Agriculture Conservation Practice Impacts on Groundwater Levels at Watershed Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1553-1566, March.
    13. de Azevedo, Pedro V. & da Silva, Bernardo B. & da Silva, Vicente P. R., 2003. "Water requirements of irrigated mango orchards in northeast Brazil," Agricultural Water Management, Elsevier, vol. 58(3), pages 241-254, February.
    14. Holland, Jonathan E. & Luck, Gary W. & Max Finlayson, C., 2015. "Threats to food production and water quality in the Murray–Darling Basin of Australia," Ecosystem Services, Elsevier, vol. 12(C), pages 55-70.
    15. Ellis, T.W. & Hatton, T.J., 2008. "Relating leaf area index of natural eucalypt vegetation to climate variables in southern Australia," Agricultural Water Management, Elsevier, vol. 95(6), pages 743-747, June.
    16. Tailin Li & Massimiliano Schiavo & David Zumr, . "Seasonal variations of vegetative indices and their correlation with evapotranspiration and soil water storage in a small agricultural catchment," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 0.
    17. Burton, Michael P. & Marsh, Sally P. & Patterson, Josie, 2000. "Community attitudes towards water management in the Moore Catchment, WA," 2000 Conference (44th), January 23-25, 2000, Sydney, Australia 123616, Australian Agricultural and Resource Economics Society.
    18. Thayalakumaran, T. & Bethune, M.G. & McMahon, T.A., 2007. "Achieving a salt balance--Should it be a management objective?," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 1-12, August.
    19. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. André Vizinho & David Avelar & Cristina Branquinho & Tiago Capela Lourenço & Silvia Carvalho & Alice Nunes & Leonor Sucena-Paiva & Hugo Oliveira & Ana Lúcia Fonseca & Filipe Duarte Santos & Maria José, 2021. "Framework for Climate Change Adaptation of Agriculture and Forestry in Mediterranean Climate Regions," Land, MDPI, vol. 10(2), pages 1-33, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:3:p:211-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.