IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v164y2016ip2p291-303.html
   My bibliography  Save this article

‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia

Author

Listed:
  • Gill, Bruce C.
  • Terry, Alister D.

Abstract

High watertables and land salinisation in irrigation areas worldwide can often be managed with various forms of sub-surface drainage, but constraints on the disposal of saline drainage water to downstream users and environments often requires on-site management methods. In the Shepparton Irrigation Region of northern Victoria, Australia, groundwater pumping with on-farm re-use is a well-established and effective salinity management method, provided the groundwater salinity is less than 5dS/m. In this study, a trial system established on an operating dairy farm could utilise 60Ml/yr of 10dS/m groundwater without requiring any off-site disposal. Normally in this region, such a circumstance would require evaporation basin disposal, but in this trial system, a salt-tolerant tree plantation established on already salinized land within the area of influence of the groundwater pump replaced an evaporation basin.

Suggested Citation

  • Gill, Bruce C. & Terry, Alister D., 2016. "‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia," Agricultural Water Management, Elsevier, vol. 164(P2), pages 291-303.
  • Handle: RePEc:eee:agiwat:v:164:y:2016:i:p2:p:291-303
    DOI: 10.1016/j.agwat.2015.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415301347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benyon, R. G. & Marcar, N. E. & Crawford, D. F. & Nicholson, A. T., 1999. "Growth and water use of Eucalyptus camaldulensis and E. occidentalis on a saline discharge site near Wellington, NSW, Australia," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 229-244, February.
    2. Letey, J. & Feng, G.L., 2007. "Dynamic versus steady-state approaches to evaluate irrigation management of saline waters," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 1-10, July.
    3. Corwin, Dennis L. & Rhoades, James D. & Simunek, Jirka, 2007. "Leaching requirement for soil salinity control: Steady-state versus transient models," Agricultural Water Management, Elsevier, vol. 90(3), pages 165-180, June.
    4. Bastiaanssen, W.G.M. & Allen, R.G. & Droogers, P. & D'Urso, G. & Steduto, P., 2007. "Twenty-five years modeling irrigated and drained soils: State of the art," Agricultural Water Management, Elsevier, vol. 92(3), pages 111-125, September.
    5. Su, Ninghu & Bethune, Matthew & Mann, Louise & Heuperman, Alfred, 2005. "Simulating water and salt movement in tile-drained fields irrigated with saline water under a Serial Biological Concentration management scenario," Agricultural Water Management, Elsevier, vol. 78(3), pages 165-180, December.
    6. Beltran, Julian Martinez, 1999. "Irrigation with saline water: benefits and environmental impact," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 183-194, May.
    7. Thayalakumaran, T. & Bethune, M.G. & McMahon, T.A., 2007. "Achieving a salt balance--Should it be a management objective?," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 1-12, August.
    8. Heuperman, Alfred, 1999. "Hydraulic gradient reversal by trees in shallow water table areas and repercussions for the sustainability of tree-growing systems," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 153-167, February.
    9. Westcot, D. W., 1988. "Reuse and disposal of higher salinity subsurface drainage water -- A review," Agricultural Water Management, Elsevier, vol. 14(1-4), pages 483-511, August.
    10. Christen, E. & van Meerveld, I., 2000. "Institutional arrangements in the Shepparton Irrigation Region, Victoria, Australia," IWMI Research Reports H026313, International Water Management Institute.
    11. Letey, J. & Hoffman, G.J. & Hopmans, J.W. & Grattan, S.R. & Suarez, D. & Corwin, D.L. & Oster, J.D. & Wu, L. & Amrhein, C., 2011. "Evaluation of soil salinity leaching requirement guidelines," Agricultural Water Management, Elsevier, vol. 98(4), pages 502-506, February.
    12. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Addab, Haider & Bailey, Ryan T., 2022. "Simulating the effect of subsurface tile drainage on watershed salinity using SWAT," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    2. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    3. Thayalakumaran, T. & Bethune, M.G. & McMahon, T.A., 2007. "Achieving a salt balance--Should it be a management objective?," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 1-12, August.
    4. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    5. Shahrokhnia, Hossein & Wu, Laosheng, 2021. "SALEACH: A new web-based soil salinity leaching model for improved irrigation management," Agricultural Water Management, Elsevier, vol. 252(C).
    6. Barnard, J.H. & Bennie, A.T.P. & van Rensburg, L.D. & Preez, C.C. du, 2015. "SWAMP: A soil layer water supply model for simulating macroscopic crop water uptake under osmotic stress," Agricultural Water Management, Elsevier, vol. 148(C), pages 150-163.
    7. Khan, Shahbaz & Rana, Tariq & Hanjra, Munir A. & Zirilli, John, 2009. "Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue?," Agricultural Water Management, Elsevier, vol. 96(3), pages 493-503, March.
    8. Tripler, Effi & Shani, Uri & Ben-Gal, Alon & Mualem, Yechezkel, 2012. "Apparent steady state conditions in high resolution weighing-drainage lysimeters containing date palms grown under different salinities," Agricultural Water Management, Elsevier, vol. 107(C), pages 66-73.
    9. Skaggs, T.H. & Suarez, D.L. & Goldberg, S. & Shouse, P.J., 2012. "Replicated lysimeter measurements of tracer transport in clayey soils: Effects of irrigation water salinity," Agricultural Water Management, Elsevier, vol. 110(C), pages 84-93.
    10. Peragón, Juan M. & Pérez-Latorre, Francisco J. & Delgado, Antonio & Tóth, Tibor, 2018. "Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards," Agricultural Water Management, Elsevier, vol. 202(C), pages 33-41.
    11. Chen, Weiping & Hou, Zhenan & Wu, Laosheng & Liang, Yongchao & Wei, Changzhou, 2010. "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China," Agricultural Water Management, Elsevier, vol. 97(12), pages 2001-2008, November.
    12. Marlet, Serge & Bouksila, Fethi & Bahri, Akissa, 2009. "Water and salt balance at irrigation scheme scale: A comprehensive approach for salinity assessment in a Saharan oasis," Agricultural Water Management, Elsevier, vol. 96(9), pages 1311-1322, September.
    13. Merchán, D. & Casalí, J. & Del Valle de Lersundi, J. & Campo-Bescós, M.A. & Giménez, R. & Preciado, B. & Lafarga, A., 2018. "Runoff, nutrients, sediment and salt yields in an irrigated watershed in southern Navarre (Spain)," Agricultural Water Management, Elsevier, vol. 195(C), pages 120-132.
    14. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).
    15. Giovanna CUCCI & Giovanni LACOLLA & Mario A. MASTRO & Gianraffaele CARANFA, 2016. "Leaching effect of rainfall on soil under four-year saline water irrigation," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(3), pages 181-189.
    16. Ben-Gal, Alon & Ityel, Eviatar & Dudley, Lynn & Cohen, Shabtai & Yermiyahu, Uri & Presnov, Eugene & Zigmond, Leah & Shani, Uri, 2008. "Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers," Agricultural Water Management, Elsevier, vol. 95(5), pages 587-597, May.
    17. Crosbie, Russell S. & Wilson, Brett & Hughes, Justin D. & McCulloch, Christopher & King, Warren McG., 2008. "A comparison of the water use of tree belts and pasture in recharge and discharge zones in a saline catchment in the Central West of NSW, Australia," Agricultural Water Management, Elsevier, vol. 95(3), pages 211-223, March.
    18. Peragón, Juan Manuel & Delgado, Antonio & Pérez-Latorre, Francisco J., 2015. "A GIS-based quality assessment model for olive tree irrigation water in southern Spain," Agricultural Water Management, Elsevier, vol. 148(C), pages 232-240.
    19. Song, Changji & Song, Jingru & Wu, Qiang & Shen, Xiaojun & Hu, Yawei & Hu, Caihong & Li, Wenhao & Wang, Zhenhua, 2023. "Effects of applying river sediment with irrigation water on salinity leaching during wheat-maize rotation in the Yellow River Delta," Agricultural Water Management, Elsevier, vol. 276(C).
    20. Amninder Singh & Nigel W. T. Quinn & Sharon E. Benes & Florence Cassel, 2020. "Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California," Sustainability, MDPI, vol. 12(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:164:y:2016:i:p2:p:291-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.