IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i3p493-503.html
   My bibliography  Save this article

Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue?

Author

Listed:
  • Khan, Shahbaz
  • Rana, Tariq
  • Hanjra, Munir A.
  • Zirilli, John

Abstract

Agricultural water markets can facilitate adjustments to water scarcity and competition and enhance economic efficiency, but markets cannot automatically balance efficiency, equity and environmental sustainability goals. The consequences of water trading on soil salinity in irrigation areas are not yet fully understood, but recognized as an issue that needs to be analysed. This paper explores the nexus between water trading and groundwater-induced soil salinity in a selected irrigated area in the Murray-Darling Basin. Results show that minimum irrigation intensities must be met to flush salts out of the root zone especially in shallow water table/high salinity impact areas. Such minimum irrigation intensities are helpful but not necessarily in deep water table/low salinity impact areas. Should water markets lead to permanent water transfers out of mature irrigation areas, minimum irrigation intensity needs might not be met in high salinity impact areas, causing substantial negative impacts on resource quality and agricultural productivity. Water trading that adds to salinity cannot be economically viable in the long run. The tradeoffs between water trading and environmental and equity goals need to be determined. This work contributes to the wider debate on Australian water policy aimed at achieving water security through water trading in the Murray-Darling Basin.

Suggested Citation

  • Khan, Shahbaz & Rana, Tariq & Hanjra, Munir A. & Zirilli, John, 2009. "Water markets and soil salinity nexus: Can minimum irrigation intensities address the issue?," Agricultural Water Management, Elsevier, vol. 96(3), pages 493-503, March.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:3:p:493-503
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(08)00226-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Letey, J. & Feng, G.L., 2007. "Dynamic versus steady-state approaches to evaluate irrigation management of saline waters," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 1-10, July.
    2. Peterson, Deborah C. & Dwyer, Gavan & Appels, David & Fry, Jane, 2004. "Modelling Water Trade in the Southern Murray-Darling Basin," Staff Working Papers 31925, Productivity Commission.
    3. Corwin, Dennis L. & Rhoades, James D. & Simunek, Jirka, 2007. "Leaching requirement for soil salinity control: Steady-state versus transient models," Agricultural Water Management, Elsevier, vol. 90(3), pages 165-180, June.
    4. Charlotte Duke & Lata Gangadharan, 2005. "Regulation in Environmental Markets: What Can We Learn from Experiments to Reduce Salinity?," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 38(4), pages 459-469, December.
    5. Heaney, Anna & Dwyer, Gavan & Beare, Stephen & Peterson, Deborah C. & Pechey, Lili, 2006. "Third-party effects of water trading and potential policy responses," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 1-17, September.
    6. Wichelns, Dennis, 1999. "An economic model of waterlogging and salinization in arid regions," Ecological Economics, Elsevier, vol. 30(3), pages 475-491, September.
    7. Easter, K William & Rosegrant, Mark W & Dinar, Ariel, 1999. "Formal and Informal Markets for Water: Institutions, Performance, and Constraints," The World Bank Research Observer, World Bank, vol. 14(1), pages 99-116, February.
    8. Brennan, Donna C. & Scoccimarro, Michelle, 1999. "Issues in defining property rights to improve Australian water markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 43(1), pages 1-21, March.
    9. Brooks, Robert & Harris, Edwyna, 2008. "Efficiency gains from water markets: Empirical analysis of Watermove in Australia," Agricultural Water Management, Elsevier, vol. 95(4), pages 391-399, April.
    10. Conyers, M.K. & Hume, I. & Summerell, G. & Slinger, D. & Mitchell, M. & Cawley, R., 2008. "The ionic composition of the streams of the mid-Murrumbidgee River: Implications for the management of downstream salinity," Agricultural Water Management, Elsevier, vol. 95(5), pages 598-606, May.
    11. Khan, Shahbaz & Rana, Tariq & Hanjra, Munir A., 2008. "A cross disciplinary framework for linking farms with regional groundwater and salinity management targets," Agricultural Water Management, Elsevier, vol. 95(1), pages 35-47, January.
    12. Deborah Peterson & Gavan Dwyer & David Appels & Jane Fry, 2005. "Water Trade in the Southern Murray–Darling Basin," The Economic Record, The Economic Society of Australia, vol. 81(s1), pages 115-127, August.
    13. Khan, Shahbaz & Tariq, Rana & Yuanlai, Cui & Blackwell, J., 2006. "Can irrigation be sustainable?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 87-99, February.
    14. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    15. Anna Heaney & Gavan Dwyer & Stephen Beare & Deborah Peterson & Lili Pechey, 2006. "Third-party effects of water trading and potential policy responses ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 277-293, September.
    16. Bjornlund, Henning, 2003. "Farmer participation in markets for temporary and permanent water in southeastern Australia," Agricultural Water Management, Elsevier, vol. 63(1), pages 57-76, November.
    17. Khan, Shahbaz & Mushtaq, Shahbaz & Hanjra, Munir A. & Schaeffer, Jürgen, 2008. "Estimating potential costs and gains from an aquifer storage and recovery program in Australia," Agricultural Water Management, Elsevier, vol. 95(4), pages 477-488, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juliane Haensch & Sarah Ann Wheeler & Alec Zuo & Henning Bjornlund, 2016. "The Impact of Water and Soil Salinity on Water Market Trading in the Southern Murray–Darling Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-26, March.
    2. Frank A. Ward, 2016. "Policy Nook: “Policy Challenges Facing Agricultural Water Use: An International Look”," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-14, September.
    3. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    4. Aein, Reza & Alizadeh, Hosein, 2021. "Integrated hydro-economic modeling for optimal design of development scheme of salinity affected irrigated agriculture in Helleh River Basin," Agricultural Water Management, Elsevier, vol. 243(C).
    5. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke, 2017. "Social welfare losses from groundwater over-extraction for small-scale agriculture in Sri Lanka: Environmental concern for land use," Journal of Forest Economics, Elsevier, vol. 29(PA), pages 47-55.
    6. Mai, Thanh & Mushtaq, Shahbaz & Loch, Adam & Reardon-Smith, K. & An-Vo, Duc-Anh, 2019. "A systems thinking approach to water trade: Finding leverage for sustainable development," Land Use Policy, Elsevier, vol. 82(C), pages 595-608.
    7. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.
    8. D.-A. An-Vo & S. Mushtaq & T. Nguyen-Ky & J. Bundschuh & T. Tran-Cong & T. Maraseni & K. Reardon-Smith, 2015. "Nonlinear Optimisation Using Production Functions to Estimate Economic Benefit of Conjunctive Water Use for Multicrop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2153-2170, May.
    9. Sarah Ann Wheeler, 2022. "Debunking Murray‐Darling Basin water trade myths," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 797-821, October.
    10. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Shahbaz & Hanjra, Munir A., 2009. "Footprints of water and energy inputs in food production - Global perspectives," Food Policy, Elsevier, vol. 34(2), pages 130-140, April.
    2. Qureshi, M. Ejaz & Shi, Tian & Qureshi, Sumaira E. & Proctor, Wendy, 2009. "Removing barriers to facilitate efficient water markets in the Murray-Darling Basin of Australia," Agricultural Water Management, Elsevier, vol. 96(11), pages 1641-1651, November.
    3. Brooks, Robert & Harris, Edwyna, 2008. "Efficiency gains from water markets: Empirical analysis of Watermove in Australia," Agricultural Water Management, Elsevier, vol. 95(4), pages 391-399, April.
    4. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.
    5. Agbola, Frank W. & Evans, Nigel, 2012. "Modelling rice and cotton acreage response in the Murray Darling Basin in Australia," Agricultural Systems, Elsevier, vol. 107(C), pages 74-82.
    6. de Bonviller, Simon & Zuo, Alec & Wheeler, Sarah Ann, 2019. "Is there evidence of insider trading in Australian water markets?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(2), April.
    7. Khan, S. & Khan, M.A. & Hanjra, M.A. & Mu, J., 2009. "Pathways to reduce the environmental footprints of water and energy inputs in food production," Food Policy, Elsevier, vol. 34(2), pages 141-149, April.
    8. Donna Brennan, 2008. "Missing markets for storage and the potential economic cost of expanding the spatial scope of water trade," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(4), pages 471-485, December.
    9. Gill, Bruce C. & Terry, Alister D., 2016. "‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia," Agricultural Water Management, Elsevier, vol. 164(P2), pages 291-303.
    10. Mallawaarachchi, Thilak & Auricht, Christopher & Loch, Adam & Adamson, David & Quiggin, John, 2020. "Water allocation in Australia’s Murray–Darling Basin: Managing change under heightened uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 345-369.
    11. Productivity Commission, 2008. "Towards Urban Water Reform: A Discussion Paper," Research Papers 0801, Productivity Commission, Government of Australia.
    12. Sarah Ann Wheeler, 2022. "Debunking Murray‐Darling Basin water trade myths," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(4), pages 797-821, October.
    13. Athukorala, Wasantha & Wilson, Clevo & Managi, Shunsuke, 2017. "Social welfare losses from groundwater over-extraction for small-scale agriculture in Sri Lanka: Environmental concern for land use," Journal of Forest Economics, Elsevier, vol. 29(PA), pages 47-55.
    14. Brooks, Robert & Harris, Edwyna, 2014. "Price leadership and information transmission in Australian water allocation markets," Agricultural Water Management, Elsevier, vol. 145(C), pages 83-91.
    15. Wichelns, Dennis & Qadir, Manzoor, 2015. "Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater," Agricultural Water Management, Elsevier, vol. 157(C), pages 31-38.
    16. Edwyna Harris, 2011. "The Impact of Institutional Path Dependence on Water Market Efficiency in Victoria, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(15), pages 4069-4080, December.
    17. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    18. Gavan Dwyer & Robert Douglas & Deb Peterson & Jo Chong & Kate Maddern, 2006. "Irrigation externalities: pricing and charges," Staff Working Papers 0603, Productivity Commission, Government of Australia.
    19. Chi H. Truong, 2014. "A Two Factor Model for Water Prices and Its Implications for Evaluating Real Options and Other Water Price Derivatives," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 62(1), pages 23-45, March.
    20. M Ejaz Qureshi & Tian Shi & Sumaira Qureshi & Wendy Proctor & Mac Kirby, 2009. "Removing Barriers to Facilitate Efficient Water Markets in the Murray Darling Basin – A Case Study from Australia," Socio-Economics and the Environment in Discussion (SEED) Working Paper Series 2009-02, CSIRO Sustainable Ecosystems.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:3:p:493-503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.